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Figure 1: Our processing pipeline for one view of Dino dataset. Our key
steps include: hierarchical framework (blue), local propagation (red), and
cross-view filtering with an additional propagation pass (green).

Motivation. Multi View Stereo (MVS) aims to establish 3D models from
multiple calibrated images. Some works use region growing to estimate
depth map per view, and then merge the results. They either only deal
with reliable regions, or have difficulty in parallelizing. More crucially,
due to the view-independent estimation, inconsistent outliers may exist
and grow during propagation, producing unstable estimates across views.
This leads to a large amount of estimates removed in the merging stage
after consistency checking, and diminishes the reconstruction quality.

To increase robustness of depth-map-based MVS methods, we com-
bine several techniques: Depth estimates are propagated in parallel in the
local neighborhood to efficiently spread reliable depth information into re-
gions without prominent structures. A faster coarse-to-fine strategy fills in
larger holes. Most importantly, a novel cross-view filtering stage based on
free-space constraints and variance filtering, enforces consistency among
the depth maps of different views. Our algorithm alternates between cor-
relation and consistency optimization. This way, noisy patches and spikes
are excluded so that the subsequent depth map fusion becomes easier.

Workflow. Figure 1 shows our workflow. Ik, Dk, and Nk are the image,
depth map, and normal map of a reference view at scale k. I0 is the in-
put image. Each view selects at most 6 secondary images. Before the
first propagation step at each scale, randomly shifted depths and random
normals are assigned if smaller matching errors are obtained.

Initialization. For a pixel p, we initialize its depth D0(p) from bundler if
p is feature point; otherwise D0(p) = 0. Its normal Nk(p) including the
gradients of the tangent plane in x and y directions, is initialized fronto-
parallel at the coarsest scale, i.e. N2(p) = {0,0}. Before the estimation at
each scale, Ek is initialized using the existing depth and normal estimates.

Local Propagation (LP). Good depth and normal estimates are dispersed
into the neighborhoods by traversing all pixels if the propagated value im-
proves the correlation measure. The depth hypothesis considers the nor-
mal of the tilted patch. Pixels are traversed along parallel scanlines on
GPU. We shorten the traversal distance of the work [2] such that more
GPU threads can be assigned. In every other iteration vertical and hori-
zontal propagations are applied alternately.

Hierarchical Framework (HF). For textureless regions with few initial-
izations, one propagation alone at the original scale is insufficient due to
the locality of short scanlines. We down-scale the depth map and spread
the sparse data into neighborhoods. This way, one propagation at the
coarsest scale can fill most of the holes. Then the estimates are used for
the consecutive finer scale by up-scaling. The overall time is also reduced
since the scaling is negligible compared with the speed-up of propagation.
We also down-scale the images and up-scale the normal maps.

Cross-View Filtering (CVF). Inspired by the temporally consistent opti-
cal flow estimation [3], after local propagation of all views, we perform a
cross-view filtering for each reference view to improve the depth consis-
tency. Then a second propagation spreads the optimized estimates.

The projection relationships of pixels between views are considered
using the depth information. For each depth value, we find the corre-
sponding pixels in the secondary views, and project them back into the

Step Bailer et al. [2] Only LP LP+HF LP+CVF LP+HF+CVF
Downscaling 8.4s 8.4s

1st

Propagation 174.3s 142.2s 13.6s 142.0s 13.6s
Cross-View Filtering 151.2s 10.8s
Propagation 226.9s 16.0s
Upscaling 0.4s 0.4s

2nd

Propagation 1126.6s 880.3s 224.5s 1000.7s 250.0s
Cross-View Filtering 193.3s 49.2s
Propagation 951.9s 228.7s
Upscaling 2.1s 2.1s

3rd
Propagation 418.0s 410.2s 417.4s 450.6s 458.2s
Cross-View Filtering 204.1s 214.0s
Propagation 279.9s 280.6s

Outlier removal 42.2s 41.2s 44.2s 48.1s 51.1s
Refinement 121.7s 144.1s 151.3s 189.5s
Overall 1984.4s 1866.8s 1079.1s 4020.3s 1844.1s

Table 1: Timings
of each step using
Bailer et al. [2] and
different combinations
of our processing steps,
when reconstructing all
views of Fountain-P11.

Measurement Bailer et al. [2] Only LP LP+HF LP+CVF LP+HF+CVF LP+HF+CVF1 LP+HF+CVF2

Mean Rel. Error (×10−3) ↓ 1.663 1.414 1.236 2.407 1.732 1.505 2.062
Completeness (%) ↑ 64.0 63.9 66.9 74.6 79.6 75.9 80.5
Mean Consistency ↑ 9.083 9.019 9.124 9.611 9.556 9.253 10.090
Mean Variance (×10−6) ↓ 1.790 1.722 1.626 1.602 1.092 1.179 1.099
Mean Rel. Error of LP+HF+CVF on
Pixels of Other Methods (×10−3) ↓ 1.102 1.068 1.142 1.292 1.319 1.368

Table 2: Statistical comparisons for the center view of Fountain-P11 after
outlier removal. LP+HF+CVF1 uses cross-view filtering only for post-
processing, and LP+HF+CVF2 uses propagation-filtering at each scale
without the second propagation. The arrows indicate preferred directions.
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Figure 2: Completeness, mean consistency rating, and mean variance
comparisons for some views of Dino and Temple datasets.

Bailer et al. [2] (no
depth map refinement)

LP+HF (no depth
map refinement)

LP+HF+CVF (no
depth map refinement)

LP+HF+CVF (with
depth map refinement)

Figure 3: Depth maps and 3D models of a region in Sofa dataset after
outlier removal and our final results with depth map refinement.

reference view obtaining new depth candidates. These candidates are
weighted by the depth difference between the reference and secondary
views to get an optimized depth. In some cases, this depth projection
from secondary views can even fill holes in the reference, spawning fur-
ther, more consistent propagation. To avoid slight shifting for some inliers
which were accurate before, we additionally check three randomly shifted
depth values around the new depth.

Outlier Removal and Refinement. Inconsistent outliers are filtered out
from the resulting depth maps. Results are finally refined by filling the
holes and then filtering the noise.

Results. Some results are presented in Tables 1 and 2, as well as Figs. 2
and 3. The relative error evaluates depth accuracy between the estimates
and ground truth. The completeness relates the number of recovered pix-
els to the image size. The consistency [2] and variance (see the paper)
measure the multi-view coherence. Combining improved propagation, hi-
erarchical estimation, and iterative multi-view consistency optimization,
our method increases the estimation speed, generates dense depth maps
with desirable global consistency, and yields convincing 3D reconstruc-
tion results. The benchmark results of our full pipeline using the Mid-
dlebury evaluation website [1] demonstrate that, our work is competitive
with other methods and placed among the most efficient approaches.
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