
 

  

 

Although performances in the high nineties are typically obtained for 
tasks such as texture segmentation and classification the same cannot be 
said of judging texture similarity where a classifier has to estimate the 
degree to which pairs of textures appear similar to human observers. In 
an investigation of 51 computational feature sets Dong et al. [1] showed 
that none of these managed to estimate similarity data derived from a 
population of human observers better than an average agreement rate of 
57.76%. Coincidently, none of these computed higher order statistics 
(HOS) over large regions (≥ 19×19 pixels). 

We have discovered few methods that encode long-range, aperiodic 
characteristics of texture; however, it is well-known that such data are 
critical to human perception of imagery [2, 3]. For instance, scrambling 
phase spectra (while leaving the power spectra intact) will often render 
imagery unintelligible to the human observer [3]. It is also well-known 
that humans are extremely adept at exploiting the long-range visual 
interactions evident in contour information [2, 4]. Therefore, we 
designed an experiment with human observers in order to determine 
which of three different types of information (2nd-order statistics, local 
higher order statistics and contour information, see Figure 1) are more 
important for the perception of texture.  

Ten human observers were used in a 2AFC (two-alternative forced 
choice) scheme with 334 texture images drawn from the Pertex database 
[5]. In each trial the observer was required to compare an original 
texture image quarter and one variant image quarter (“variant” being one 
of either contour, power spectrum or randomized block) and decide 
whether the variant represented the original texture or not (50% of the 
time they did not). Different quarters of the same texture sample were 
used in order to prevent observers from performing pixel-wise 
comparisons. It was found that contour data is more important than local 
image patches, or 2nd-order global data, to human observers.  

 

   

   

Figure 1: Each of the three columns shows two images derived from the 
same texture sample (although not the same physical texture area). The 
upper row shows unprocessed images. The lower row shows, from left 
to right, the corresponding contour map, power spectrum image and 
randomized, blocked image. 

We therefore developed a contour-based feature set that exploits the 
long-range HOS encoded in the spatial distribution and orientation of 
contour segments. A contour is first fragmented into a set of equidistant 
segments and is then encoded using the spatial distribution and 
orientation of these segments. Note that images are first processed with 
the Canny edge detector [6] followed by a morphological erosion 
operator [7] in order to produce skeleton maps (see Figure 2 (b)). 
Connected component labelling [7] is performed on skeleton maps. 
Subsequently, the Moore-neighbour tracing algorithm with Jacob’s 
stopping criteria [7] is applied to each contour and a sequence of points 
is obtained from each contour. Each contour is then divided into a series 
of equidistant segments. We represent segments by their mid-point 
position (on themselves) and chord orientation 𝜃 (𝜃 ∈ (0º, 180º]). 

We use these data in two ways as outlined in Figure 2. In the first we 
encode the average shape of the contours in a segment joint 

orientation/distance histogram (see Figure 2 (d) upper). This provides 
data on the long-range higher-order visual interactions. In the second we 
used basic aura matrices [8] (see Figure 2 (d) lower) to encode the 
spatial distributions and orientations of the all of the segments within a 
local window without regard to which contour they belong. These data 
naturally provide relatively short-range (23×23 or less) HOS. The mean 
of all segment orientation/distance histograms and each basic aura 
matrix were concatenated into one feature vector which we refer to as 
“SDoCS” (spatial distribution of contour segments). We test it with two 
different segment angle quantization schemes (using 𝐴  bins, 𝐴 ∈
{18,36}), five different segment lengths (𝑆𝐿 ∈ {3,5,7,9,11}) and one 
multi-scale case (𝑆𝐿 =“𝑀𝑆”) which concatenates all five feature vectors 
derived from the five different segment lengths. 

(a) (b) (c) (d)  

Figure 2: A representation of the basic information flow: (a) original 

texture image; (b) skeleton map; (c) segment map. For display purposes, 

only a part of pixels are shown for each approximate segment; and (d) 

the joint histogram (upper) and basic aura matrix [8] (lower, only one is 

shown here). 

SDoCS was compared against the 51 feature sets tested by Dong et 
al. [1, 9] and another contour model derived from shape recognition. A 
pair-of-pairs based evaluation method and a ranking-based evaluation 
method [1, 9] were applied. The results show that the proposed method 
outperforms all the other feature sets in the pairs-of-pairs task and all but 
two feature sets in the ranking task.  

We feel that the key point, however, is that we have showed the 
usefulness of long-range HOS in computing texture similarity and hope 
that this will inspire other developments of texture features based on 
such information. 
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