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Illuminant Estimation which is the process of estimating the colour of the
prevailing light and discounting it from the image is often done as the
preprocessing step in computer vision, so that the image colour be used
as a stable cue for indexing, recognition, tracking, etc. [4, 5].

Almost all illumination estimation research uses the angle between
the RGB of the actual measured illuminant colour and that estimated one
as the recovery error, which is defined as:
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where pf denotes the RGB of the actual measured light, pZ* denotes
the RGB estimated by an illuminant estimation algorithm and “” denotes
the vector dot product. Over a benchmark set, the average angular perfor-
mance is calculated (including mean, median, and quantiles) and different
algorithms are ranked according to these summary statistics [3].

This paper argues that recovery angular error despite its wide spread
adoption has a fundamental weakness which casts doubt on its suitabil-
ity. We observe that the same scene, viewed under two different coloured
lights, leads to different recovery errors for the same illuminant estima-
tion algorithm, despite the fact that when we remove the colour bias due
to illuminant (we divide out by light) exactly the same reproduction is
produced.

To illustrate this point we show at the top of Figure 1 four images
of the same scene from the SFU Lab dataset [1] which are captured un-
der different chromatic lights, from left to right: solux-4700K+blue fil-
ter; Sylvania warm white fluorescent; solux-4700K+3202+blue filter and
Philips Ultralume fluorescent. Notice how much the colour (due to il-
lumination) varies from left to right. Now, using the simple gray-world
algorithm [2] for illuminant estimation we estimate the RGB of the light
(the average image colour is the estimated colour of the light). Dividing
the images by this estimate we produce the image outputs shown in the
second row. In this case gray-world works reasonably well and the object
colours look correct (though, of course this is not always the case). It is
easy to show that dividing out by the gray-world estimate (or, indeed the
estimates made by most algorithms) that the same output reproduction is
made. In the 3rd row of Figure 1 we show the recovery angular errors (the
plot with open bullets). Even though the same reproduction is produced
the recovery angular error varies from 5.5° to 9° (an 80% difference).
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Figure 1: Row 1: four images captured under very chromatic illuminants.
Row 2: corrected images using general gray-world [2] algorithm (Images
are from [1]). Row 3: The Recovery angular error (conventional error
measure) versus the Reproduction angular error (proposed error measure).
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Figure 2: A pictorial scheme of the changed rank algorithms for SFU
dataset [1] based on both median recovery and reproduction angular er-
Tors.

We begin this paper by quantifying the scale of this problem. For
a given scene and algorithm, we solve for the range of recovery angular
errors that can be observed given all colours of light. We define a theory
which states that the lowest errors are for red, green and blue lights and
the largest for cyans, magentas and yellows.

In the second part of the paper, we propose a new reproduction an-
gular error which is defined as the angle between the RGB of a white
surface when the ground-truth (p£" in Eq. (2)) and estimated illumina-

tions (BES’ in Eq. (2)) are ‘divided out” :
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We prove that this reproduction error metric, by construction, gives the
same error for the same algorithm-scene pair. The reproduction angular
errors for the reproduced images in Figure 1 are shown in the 3rd row of
the same figure (the plot with the black bullets). Compared to the recovery
angular error, the reproduction error is almost similar for the same scene
captured under different colours of illuminants (almost since the process
of image formation does not only depend on the color of the illuminant).

For many algorithms and many benchmark datasets we recompute the
illuminant estimation performance of a range of algorithms for the new
reproduction error and then compare against the algorithm rankings for
the old recovery error. We find that using the new measure, the rankings
of algorithms remains, while broadly unchanged can change and there can
be local switches in rank (see Figure 2). Also the algorithm parameters
which can be tuned to provide that best illuminant estimation performance
can be chosen differently, depending on whether the reproduction angular
error or the recovery angular error is used for evaluation.
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