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Classification is one of the most fundamental and best understood
machine learning problems. Different scenarios differ strongly in their
training procedure, but agree fundamentally in their prediction step at test
time: each test sample is assigned a label individually. However, in many
real-world the samples to be classified occur in batches, such as words
in a document, images in a photo collection, or stocks in a portfolio, and
exploiting this fact should make it possible to achieve increased classifi-
cation accuracy.

To motivate our framework, consider the situation of a linear classi-
fier, which is efficiently trainable and exhibits good generalization capa-
bilities but has a decision hypersurface that might not perfectly reflect the
class boundaries in feature space. Given sufficiently many test samples it
should be possible to modulate the classifier’s decision boundary, for ex-
ample, based on the cluster assumption, which states that class decision
boundaries typically do not cross high density regions (see Figure 1 for
an illustration).

Despite its potential, the task of co-classification, i.e. classifying a set
of points jointly, has received little attention in the literature. In this work,
we introduce CoConut, a method for co-classification based on the estab-
lished principle of regularized risk minimization. It jointly labels all test
points by minimizing a regularized risk functional that that incorporates
additional information in the output (label) space. CoConut only requires
the output of a set of classifiers as input, but makes no assumption on how
they were trained. It is also efficient, as it requires no additional training
step but only solves a regularized risk functional using efficient energy
minimization techniques.

We formalize the co-classification scenario in the following way. We
are given a set of (test) examples, X = {x,...,x,} from an input space
X, and we want to predict labels Y = {y;,...,y,} from a label set J =
{1,...,L}. For this task we have access to L fixed base classifiers with
prediction functions, fi,...,fL : X — R, where forany x € X and [ € )}
the value f;(x) reflects a confidence that the sample x belongs to class .
The straight-forward choice for labeling the test points is then to predict

(greedily) the most confident label for each sample, y; = argmax f;(x;).
I=1,...L
We propose to compute a joint labeling y* = (y},...,y;) € V" of the
test points by solving the following optimization problem:

y" = argmin *Z[[yz—lﬂfz(x,HlQ( ); €]

yey" =1

where Q is a regularizer that penalizes undesirable label combinations
and A € RT is a constant that controls the regularization strength. Note
that for A — 0 we recover independent per-sample predictions, showing
that per-example label selection can be thought of as a special case of
this framework. Equation (1) resembles the expressions occurring in the
classical framework of regularized risk minimization [1]. The difference
lies in the fact that we regularize in the output space (the space of all
labelings), not in the space of classifier parameters. Therefore, we call
the resulting approach Co-Classification with output space regularization
(CoConut).

In our choice of regularizer we encode the inductive bias we have
about the problem. Often this would be an assumption that the true labels
vary smoothly with respect to the inputs. For any point x;, let N; C X be
the set of neighbors that are similar to x;. Let w;; denote the a measure of
the similarity between two neighbors x; and x;. For any x; € N; the slope
of g between x; and x; is w;;6;;(g), where &;;(g) := [g(x;) # g(x;)] indi-
cates whether g changes value between x; and x;. Averaging this quantity
across all neighbors and all points, we obtain a measure for the average
discontinuity (lack of smoothness) of any labeling function g € G:
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Figure 1: Schematic illustration of the effect of the cluster assumption.
Left: supervised training of a linear classifier with few training examples
(bold circles): many mistakes occur at test time (red dots). Middle: cluster
assumption during training reduces errors. Right: cluster assumption at
test time reduces errors even further.

A regularizer can also encode a preference for a certain class label
distribution at test time. This can counter the effect of the bias introduced
by training with imbalanced class distributions. We assume that the target
(expected) class label proportion for class [ is Q;, where ZIL:I Or=1We
define a measure for the disparity between the class label proportion p;(g)
induced by labeling function g and the target proportion for each class /:

L
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where p;(g) = %Z;‘Zl [g(x;) =[] are the label proportions the hypothesis
g. The regularizer Qp penalizes the deviation from the target distribution,
and this penalty is linear in the amount of deviation.

In the paper we discuss these regularizer choices, what information
they can incorporate at test time, how they can be efficiently optimized,
and their effect on the classification performance theoretically and em-
pirically. We report our results using each regularizer on six different
datasets, reporting consistent improvements over baselines.
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