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Re-identification research breaks down into two main areas; develop-
ing effective representations that are discriminative for identity whilst in-
variant to lighting and viewpoint change [2] and development of learn-
ing methods trained to discriminate identities [1, 3]. Feature-centric ap-
proaches [2, 4] suffer from the problem that it is extremely challenging
to obtain features that are discriminative enough to distinguish people re-
liably, while simultaneously being invariant to all the practical covariates
such as motion blur, clutter, view angle and pose change, lighting and oc-
clusion. In contrast, learning approaches [3] better use a given set of fea-
tures, by discriminatively training models to maximise re-identification
performance, for example metric learning [3] and support vector ma-
chines (SVM) [1].

In this paper we address these issues by automatically constructing a
bottom-up attribute ontology, and learning an effective representation by
large-scale mining noisy but abundant content from social photo sharing
sites. We discover attributes automatically by clustering photo tag and
comment data. These clusters are used to train a large bank of detec-
tors, resulting in a number of visually detectable attributes1. This process
is significantly more scalable than manually annotating data per surveil-
lance site for attribute learning and the greater volume and diversity of
data used to train these automatically discovered attributes results in a
more generalisable attribute representation than conventional approaches
on surveillance datasets. We validate our contribution and obtain excellent
results on a set of four of the most challenging re-identification datasets.

We first apply self-tuned spectral clustering based on the BOW tf-idf
metatext representations with a vocabulary of ≈ 5,000 bigrams. We cal-
culate the similarity between the frequency of the unigrams and bigrams
rather than using the Levenshtein distance on the second gram within each
bigram. Our intuition is that in our case it is the co-occurrence of the
grams that is semantically relevent, not the similarity to other bigrams.
Spectral clustering performs well regardless of the spatial arrangement
of the underlying clusters, making it suitable for our needs. We extract
bounding boxes of people from this extremely varied collection of photos;
after conservatively thresholding person detection confidence, we are left
with 69,000 person crops with corresponding meta-text features. We train
an independent LDA model for each of the Na = 200 discovered attribute
clusters. Finally we build a representation for any person’s image X in an
internet-attribute semantic-space by stacking the positive-class posteriors
from each detector into a Na dimensional vector: IA(X). To compen-
sate for the differences in image quality between internet and surveillance
data, we align the two datasets, using domain adaptation.

The attributes obtained thus far are trained directly from discovered
text clusters so there is variability in their reliability and their usefulness
for re-identification. We therefore address learning a linear weighting w
to rescale the attributes IA such that they are weighted according to their

1This is in contrast to expert defined ontology, which while intuitive to experts, may corre-
spond to properties not possible to detect reliably with current vision techniques.
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Figure 1: Schematic overview of our pipeline; Post-Processing modules
such as distance-metric learning or domain-adaptation can be applied de-
pending on the level of supervision available in order to boost "rank 1" or
overall system performance as needed

Figure 2: Our FUSIA internet attribute (IA) representation provides a
distributed representation of conventional expert-defined attributes such
as "red shirt" (right), meaning that it can be mapped to them to allow
query in terms of existing expert attribute ontologies (EAO) built for other
surveillance data (SD).

maximum utility for re-identification.
We wish to enforce both a strong early-rank score, and good overall

performance. To achieve this, we maximise the product of the CMC curve
values p̂(k) at each rank k
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where kp is the distribution of the ranks based on NN re-identification
using L1 distances D(IAp, IAg) between each attribute encoded probe
IAp ∈ P and all gallery member, IAg ∈ G,g = 1, ...,n. Specifically we
use greedy search to select the weight w that maximises the following
metric when used to scale each dimension/attribute a:

min
w

n

∏
k=1

P̂w(k) (2)

Finally, we integrate our representation with metrics based on other
low-level features. Specifically, we fuse BR-SVM [1] (trained on ELF
features), SDALF [2] and our weighted internet attributes after further
discriminative training [3]. The resulting pseudo-metric’s fusion weights
beta can be trivially selected with standard optimisation methods:

D(Xp,Xg) = dKISS(IA(Xp), IA(Xg)) (3)

+βSDALF ·dSDALF (Xp,Xg) (4)

+βBRELF ·dBRELF (Xp,Xg). (5)

We perform nearest-neighbour re-identification with the above metric, ob-
taining state of the art re-identification performance (Figure 3). Our FU-
SIA representation also provides a distributed representation of conven-
tional expert-defined attributes. It can be mapped to them, thus allowing
queries in terms of existing attribute ontologies (Figure 2).
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Figure 3: Overall re-identification performance of our FUSIA representa-
tion versus alternatives (CMC Curves)
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