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Figure 1: Our approach is able to jointly estimate the localization and the
continuous pose of objects. To this end, we follow a HF regression voting
in conjunction with our PLEV strategy, to integrate votes from a local
region in the Hough space near the detected modes.

Object category detection has received a lot of attention over the last
decades. Recently, several approaches have gone one step further propos-
ing solutions for the problem of simultaneous object category detection
and pose estimation [1, 3, 5]. In this paper, we tackle this problem using
Hough Forests (HF) [2]. We propose a new approach (see Figure 1) which
jointly solves both tasks, providing detection hypotheses and probabilistic
estimates of their continuous pose.

We first introduce a new formulation for the regression to be per-
formed with HF, incorporating an uncertainty criterion for the contin-
uous pose of the categories. This uncertainty in pose is decoupled from
the traditional localization uncertainty [2], which allows us to randomly
choose between them during the HF learning. The resulting HF can ef-
fectively locate objects and estimate their pose.

For a set of patches S, we formulate this pose uncertainty as follows,

Mp(S) = ∑
child∈(le f t,right)

∑
j:c j=1

(
min{(||θ j−θθθ A||),360◦−(||θ j−θθθ A||)}

180◦

)2
, (1)

where c j is the class label of the j patch (c j = 1 for foreground patches,
and c j = 0 for background patches), θ j encodes the continuous pose an-
notation for the patch j, and θAθAθA is the viewpoint angle average over all
foreground patches in the set of patches Schild . Randomly switching be-
tween this pose uncertainty and the localization uncertainty of [2] guaran-
tees that the leaves of our decision trees gather image patches which vote
not only for a similar object localization, but also for a similar pose.

However, the extension of the Hough space to cover also the pose
regression turns out to be suboptimal. The main reason is that the pose
voting is very noisy, as we have experimentally observed, especially for
views with shared appearance (e.g. think of a frontal vs. frontal-left views
of a car). Instead, we propose to first localize the object, and then estimate
its pose. For this second step, a novel regression strategy is introduced,
named Probabilistic Locally Enhanced Voting (PLEV), which consists
in modulating the regression with a kernel density estimation (KDE) to
consolidate all the votes in a local Hough region near the maxima detected
in the Hough space.

During testing, patches sampled from the test image traverse the trees
and cast votes to the Hough space H based on the location and pose distri-
butions stored in the leaves. The forest-based estimate is then computed
by aggregating votes from different patches. The PLEV starts by collect-
ing the votes in our multidimensional Hough space H. We first project all
votes on the (x,y) subspace of H, and recover the object center hypothesis
ĥd = (x̂, ŷ) where the maximum is.

We then build a local Hough region H ĥd
r ⊂H for each detection hy-

pothesis ĥd. We consider to be in the defined local region only those
voting positions which receive at least one vote and are spatially close to
the detected maximum. Then, PLEV aggregates all pose votes received

within H ĥd
r , obtaining the distribution of the poses in the Hough region

(see Figure 1). Then, a Gaussian KDE is performed on that distribution in
order to obtain a smooth probability density function (PDF) for the pose
estimation. So, with the PLEV, our HF can cope with the uncertainty of
the pose estimation votes.

To further improve the detections, we finally propose to integrate a
novel pose-based backprojection (BP) strategy to boost the bounding
box (BB) estimation using the pose cues. Essentially, we extend the tradi-
tional BP strategy [2]. When computing the BP mask, we want to penalize
patches that vote not only for different object locations, as in [2], but also
for different poses. For more details, see Section 2.3 in the paper.

As a conclusion, we have proposed a new object detection and con-
tinuous pose estimation solution using HF. It can successfully detect ob-
jects, while the pose is estimated with a probabilistic output using the
PLEV. Our method reports state-of-the-art results on 4 different datasets
[1, 3, 4, 5]. We show results on cars as well as faces, and using RGB
as well as depth images as input. As a HF based approach with simple
features, it is efficient. Being a voting-based scheme, it is intrinsically
robust to occlusions. While many state-of-the-art approaches need 3D
CAD models for the object class of interest during training, our approach
is simple in the sense that we are able to learn the model directly from
annotated images. Lastly, thanks to our PLEV strategy, we obtain a prob-
abilistic output score, allowing easy integration as a building block in a
larger probabilistic framework. Our extension to video-based pose es-
timation shows how to leverage the temporal continuity in video, even
though poses may change from frame to frame. In Figure 2 we show
qualitative results for different categories and for different modalities.
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(a) Weizmann Cars Viewpoint dataset [3]
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(b) Biwi Kinect Head Pose Database [1]
Figure 2: Qualitative results. Ground truth in blue, estimations in green
and wrong detections in red.
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