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Image segmentation is a fundamental and widely studied problem in
computer vision [1, 2, 4]. Continuous efforts have been made to improve
the performance of segmentation systems to match human capability [1];
however, it is generally acknowledged that solving the segmentation prob-
lem with low-level cues alone might not be possible. There has long
been a discussion on solving this seemingly low-level task with high-level
knowledge [3], but a clear and concrete solution is not yet available.

Two main issues (both due to the lack of semantic understanding)
contribute to the main difficulty in image segmentation: (1) regions of
different appearances might belong to the same segment, (2) and different
image segments might have identical local appearances. In this paper, we
propose to perform image segmentation in a reverse way. Our method
takes a path of a high-level segmentation approach: at first per-pixel la-
beling of semantic categories is performed, followed by a procedure to
obtain segmentations with per-pixel labels got discarded in the end. We
are inspired from the observation that semantic labels give means of dif-
ferentiating similar pixels and grouping dissimilar pixels. These labels
can be viewed as a quantization of the solution space of segmentation,
and the derived segmentations are mostly consistent even when the se-
mantic level labels are not completely correct. For example, in Figure 1,
a mammal is classified as a bird because of their similarity in color and
texture, but the derived segmentation is mostly correct.

The LM+SUN dataset [5] can serve as a large-scale semantic knowl-
edge base, which provides generic high-level information. To utilize this
knowledge, we train a discriminative multi-class classifier on top of the
superpixels of the outdoor images in the LM+SUN dataset, which we
found to be sufficient for the task of general image segmentation.

Specifically, we first assign each superpixel a semantic label. Fol-
lowing [5], a superpixel is associated with a semantic class if and only
if at least half of the superpixel overlaps with a ground truth segment
mask with that label. Then, according to the label frequencies on super-
pixels, 50 most frequent classes are picked out. For each class, 20,000
superpixels of the class are sampled as positive training examples, and
another 20,000 superpixels unlabeled or with other class labels are ran-
domly drawn as negative examples; a linear SVM is then trained on the
data. These classifiers are generic and applicable to any images including
those not in the dataset. For segmentation, each superpixel is tested by all
learned classifiers to obtain a vector of confidence values.

We then formulate the problem under the framework of Conditional
Random Fields (CRF). Constraints that allow us to reduce over/under seg-
mentations near region boundaries are encoded as pairwise edge poten-
tials. Denoting S = {si} as a set of superpixels and G(S,E) as an adja-
cency graph, the probability of class labels ccc = {ci}, given the set S and
weights λ ,µ , can be formulated as

− log(Pr(ccc|G;λ ,µ))= ∑
si∈S

Φ(ci|si)+ ∑
(si,s j)∈E

[λΨ(ci,c j)+µΘ(ci,c j|si,s j)].

(1)
The unary potentials Φ are directly defined as the probability out-

put of our multi-class classifier: Φ(ci|si) = − log(Pr(ci|si)). Similar to
[5], the first binary potentials Ψ are defined as probabilities of label co-
occurrence: Ψ(ci,c j)=− log[(Pr(ci|c j)+Pr(c j|ci))/2] ·δ [ci 6= c j], where
Pr(ci|c j) is the conditional probability of one superpixel having label ci
given that its neighbor has label c′, estimated from the training set, and
δ [·] is the indicator function. The second pairwise terms Θ are defined
as Θ(ci,c j|si,s j) = W (si,s j)/(1+‖si− s j‖) · δ [ci 6= c j], where ‖si− s j‖
is the L2 difference between the feature vectors of superpixels si and s j,
and W (si,s j) is the normalized shared boundary length. W can be for-
mulated as W (si,s j) = [L(si)

−1 + L(s j)
−1] · L(si,s j), where L(si) is the

length of boundary of superpixel si, and L(si,s j) is the shared boundary
length between si and s j.

There are two parameters λ and µ in our formulation, which repre-
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Figure 1: Example images and their semantic labeling and image seg-
mentation results. Even if the semantic labels are not perfect, our pipeline
could obtain satisfactory segmentation results.

BSDS300
Covering ↑ PRI ↓ VoI ↑

ODS OIS ODS OIS ODS OIS
Human 0.73 0.73 0.87 0.87 1.16 1.16

RIS+HL 0.59 0.65 0.82 0.86 1.71 1.53
RIS+H 0.55 0.60 0.80 0.84 1.82 1.63
RIS+L 0.57 0.63 0.79 0.82 1.80 1.60

RIS 0.52 — 0.77 — 1.99 —
SuperParsing 0.48 — 0.74 — 2.07 —
gPb-owt-ucm 0.59 0.65 0.81 0.85 1.65 1.47
fPb-owt-ucm 0.57 0.63 0.80 0.84 1.69 1.49
cPb-owt-ucm 0.59 0.65 0.81 0.85 1.66 1.46

MShift 0.54 0.58 0.78 0.80 1.83 1.63
FH 0.51 0.58 0.77 0.82 2.15 1.79

Canny 0.48 0.56 0.77 0.82 2.11 1.81
MNCuts 0.44 0.53 0.75 0.79 2.18 1.84

SWA 0.47 0.55 0.75 0.80 2.06 1.75
Quad-Tree 0.33 0.39 0.71 0.75 2.34 2.22

Table 1: Comparison on the test sets of BSDS300 and BSDS500
with both supervised and unsupervised methods. For each mea-
sure, the best algorithm is highlighted.

sent the effects of high-level contextual information and low-level spatial
regularization, respectively. Given λ and µ , we adopt MCMC methods
for inference. Because the CRF is built on superpixels, the inference is
highly efficient, taking approximately 0.1 second per image on average.

We finally discard the semantic labels produced by CRF to obtain
segmentations. The proposed image segmentation framework is tested
both with and without the high/low-level pairwise potentials, resulting in
four variants (RIS, RIS+H, RIS+L, RIS+HL). For completeness, we also
evaluate the segmentations derived from the outputs of a state-of-the-art
nonparametric semantic labeling system (SuperParsing) [5].

As shown in Table 1, our solution yields highly competitive results
on the famous Berkeley Segmentation Benchmark (BSDS300) [1]. When
methods based purely on the ambiguous low-level features [1] tend to
merge patches of similar appearances but different semantics, high-level
semantic knowledge could help to figure out a correct segmentation. We
also conduct experiments on multiple other datasets and obtain consistent
results. Detailed illustrations and comparisons can be found in our paper
and supplementary material.
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