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Figure 1: The structure of RSVF. This figure shows a RSVF with N trees.
Each tree, with depth 5, is demonstrated in the last row of the figure.
The small green dots are the LSVM classifiers; the other dots are the
binary classifiers. Note, the binary classifiers mentioned in this paper
represent decision nodes, which use a threshold to split the data into two
child nodes.

Based on the structural risk minimization principle, the linear SVM aim-
ing at finding the linear decision plane with the maximal margin in the
input space has gained increasing popularity due to its generalizability,
efficiency and acceptable performance. However, rarely training data are
evenly distributed in the input space [1], which leads to a high global VC
confidence [3], downgrading the performance of the linear SVM classi-
fier. Partitioning the input space in tandem with local learning may alle-
viate the unevenly data distribution problem. However, the extra model
complexity introduced by partitioning frequently leads to overfitting.

To solve this problem, we proposed a new supervised learning al-
gorithm, Randomized Support Vector Forest (RSVF): Many partitions of
the input space are constructed with partitioning regions amenable to the
corresponding linear SVMs.

As illustrated in Figure 1, the RSVF consists of many Support Vec-
tor Trees (SVT). Each SVT represents a scheme of data partition and the
corresponding local classifier. The final classification result of RSVF is
a pooling from all the SVTs. After comparing various pooling methods
including the majority voting, and max voting, i.e., taking the prediction
from the SVT with the maximal confidence, we use majority voting from
all of the trees in the forest for its simplicity and efficacy. We grow the
RSVF through a procedure similar to growing the Classification And Re-
gression Trees (CART) in random forest [7]. The steps of building RSVF
is shown in Algorithm 1.

Input: Training dataset X and the number of trees Ntree in RSVF
Output: RSVF
for t← 1 to Ntree do

Randomly sample the bootstrap dataset X ∗ from X ; the
Out-Of-Bag data will be X\X ∗ ;
Train the SVTs T with both dataset X ∗ and X\X ∗ ;

end
Algorithm 1: Building RSVF

The generalization of the RSVF benefits from the randomness in-
jected through random feature selection and bagging, which is also es-
sential to the generalization of random forests [2].

The randomness of the partitions is injected through random feature
selection and bagging. This partition randomness prevents the overfit-
ting introduced by the over-complicated partitioning. With the injected
randomness, the generalization error of RSVF can be proved to converge
almost surely using the Law of Large Numbers when the number of SVTs

Method LSVM RF RSVF SVM-KNN χ2-KSVM RBF-KSVM

KTH* 92.59% 91.67% 93.98% 87.04% 92.59% 92.13%
UCF 65.7 ± 5.8% 61.5 ± 7.3% 72.2 ± 5.4% 48.4 ± 5.6% 66.3 ± 6.6% 62.3 ± 6.7%
Scene15 75.1 ± 0.3% 63.3 ± 0.9% 78.3 ± 0.4% 59.9 ± 0.9% 76.9 ± 0.4% 75.7 ± 0.6%

Table 1: Recognition accuracy on KTH, Scene-15 and UCF sports
datasets. *Note: since the training and the testing sets are fixed in the
KTH dataset, we just follow the standard setup so that our result can be
compared with [4, 5, 6, 9].

Type Best in [8] Linear SVM RBF-SVM RSVF RF
dna 0.059 ± 0.005 0.088 ± 0.017 0.054 ± 0.010 0.052 ± 0.008 0.056 ± 0.011
wine 0.030 ± 0.029 0.023 ± 0.024 0.016 ± 0.022 0.002 ± 0.007 0.014 ± 0.016
iris 0.057 ±0.022 0.038 ± 0.026 0.032 ± 0.025 0.029 ±0.048 0.041 ±0.029
glass 0.232 ±0.047 0.408 ± 0.091 0.300 ± 0.059 0.223 ± 0.068 0.234 ± 0.055

Table 2: Performance comparison on UCI datasets. The results in the first
column is obtained from [8].
increases. As the number of trees in RSVF increases, for almost surely all
Θ , the generalization error eg of RSVF converges to,

PX,Y (PΘ (T (X,Θ) = Y )−max
j 6=Y

PΘ (T (X,Θ) = j < 0) (1)

where T is an SVT; X is feature matrix; Y is the label of X; and Θ is a set
of parameters φ∗ associated with the SVT T .

We extensively evaluate the performance of the RSVF on several
benchmark datasets, originated from various vision applications, includ-
ing the four UCI datasets, the letter dataset, the KTH and the UCF sports
dataset, and the Scene-15 dataset. The performance is shown in Table 1
and Table 2. The proposed RSVF outperforms linear SVM, kernel SVM,
Random Forests (RF), and a local learning algorithm, SVM-KNN, on all
of the evaluated datasets. The classification speed of the RSVF is compa-
rable to linear SVM.
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