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Transductive transfer learning methods can potentially improve a very
wide range of classification tasks, as it is often the case that a domain
change happens between training and application of algorithms, and it
is also very common that unlabelled samples are available in the target
domain.

In this paper, we propose Adaptive Transductive Transfer Machine
(ATTM) which combines methods that adapt the marginal and the con-
ditional distribution of the samples, so that source and target datasets
become more similar, facilitating classification (TTM). We further intro-
duce two unsupervised dissimilarity measures which are the backbones
of our classifier adaptation approach. ATTM uses these measures to se-
lect the best classifier and to further optimise its parameters for a new
target domain. We show that our method obtains state-of-the-art results in
cross-domain vision datasets using naive features, with a significant gain
in computational efficiency in comparison to related methods.

We propose the following TTM pipeline:

A global linear transformation G' is applied to X*¢ and X”¢ such that the
marginal P(G'(X*¢)) becomes more similar to P(G'(X"¢)). Following [2|
[3l 4 3] we adopt the Maximum Mean Discrepancy (MMD) for defining a
projection matrix which aims to minimise the distance between the sample
means of the source and target domains.
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With the same objective, a local transformation is applied to each transformed
source domain sample G?(G' (xi,.)).
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Modeling the unlabelled target data, by a mixture of Gaussian probability den-
sity functions (GMM), we can formulate the problem of finding an optimal
translation parameters b as one of maximising the likelihood of the translated
source sample measured in the target domain.
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where bf) is an initial value of b’ , which is set to a vector of zeros. In our
experiments, we ran @ only once, though one can iterate it further.
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Finally, aiming to reduce the difference between the conditional distributions
in source and target spaces, a class-based transformation is applied to each of
the transformed source samples Gii(G%(Gl (x%,.))) following the TST trans-

formation of [T]].

Figure[Tillustrates the effect of the three steps of the TTM pipeline.

In the Adaptive TTM we have an extra classifier Selection and learn-
ing parameters adaptation step where we introduce two unsupervised
dissimilarity measures for selecting a proper classifier and for adapting
its parameters. More specifically, when both dissimilarity measures indi-
cate that the cross-domain datasets are very different, we suggest that it
is better to use a non-parametric classifier, like Nearest Neighbour, so no
optimisation is employed at training. When the two domains are similar
at both global and cluster levels, it is sensible to use a classifier such as
KDA, whose parameters optimised on the source domain have a better
chance of working on the target space. And finally when two domains are
similar at global levels but the clusters distribution in the two domains are
different we propose to use the KDA but adapt the lengthscale ¢ of the
RBF kernel using a linear function of the cluster dissimilarity measure.

Figure 2] demonstrates the full ATTM pipeline.
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Figure 2: Adaptive Transductive Transfer Machine (ATTM).
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Figure 1: The effect of different steps of our pipeline on digits 1 and
2 of the MNIST—USPS datasets, visualised in 2D through PCA. The
source dataset (MNIST) is indicated by stars, the target dataset (USPS)
is indicated by circles, red indicates samples of digit 1 and blue indicates
digit 2 (better viewed on the screen).

Comprehensive experiments on MNIST, USPS, COIL20 and Cal-
tech+ Office datasets show that our proposed TTM pipeline leverages the
averaged performance by 1.32% compared to the best performing state-
of-the-art of approach, JDA [3]. We have further tested our proposed
classifier Selection and learning parameters adaptation on both JDA and
TTM algorithms as AJDA and ATTM. The AJDA performance shows that
the model adaptation drastically enhances the final classifier. The perfor-
mance gains of 4.59 and 4.29 in ATTM and AJDA respectively validates
the proposed dissimilarity measures for model selection and adaptation.

It is worth pointing out that ATTM is a general framework with appli-
cability beyond image classification and could be easily applied to other
domains, even outside Computer Vision. For future work, we suggest
studying combinations of our method with instance reweighting methods
and multi-source transfer learning.

[1] N. FarajiDavar, T. deCampos, J. Kittler, and F. Yang. Transductive transfer
learning for action recognition in tennis games. In /CCV,VECTaR workshop,
2011.

A. Gretton, K. Borgwardt, M. Rasch, B. Scholkopf, and A. Smola. A kernel
method for the two sample problem. In ADVANCES IN NEURAL INFORMA-
TION PROCESSING SYSTEMS 19, pages 513-520. MIT Press, 2007.

M. Long, J. Wang, G. Ding, and P. Yu. Transfer learning with joint distribution
adaptation. In IEEE International Conference on Computer Vision (ICCV),
2013.

S.J. Pan, 1. W. Tsang, J. T. Kwok, and Q. Yang. Domain adaptation via transfer
component analysis. In Proceedings of the 21st international jont conference
on Artifical intelligence, pages 1187-1192, San Francisco, CA, USA, 2009.
Morgan Kaufmann Publishers Inc.

Q. Sun, R. Chattopadhyay, S. Panchanathan, and J. Ye. A two-stage weight-
ing framework for multi-source domain adaptation. In NIPS, pages 505—
513, 2011. URL http://dblp.uni-trier.de/db/conf/nips/
nips2011.html#SunCPY11,

(2]

(3]

(4]

(5]


http://dblp.uni-trier.de/db/conf/nips/nips2011.html#SunCPY11
http://dblp.uni-trier.de/db/conf/nips/nips2011.html#SunCPY11

