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Deep learning approaches, such as multi-layer neural networks, leverage
the amount of available data to learn representations: instead of hand-
crafting intermediate features, they are learned directly from the data.
This is particularly relevant since there is no universal feature detector
performing best for any given problem and these learned features have
been shown to outperform hand-crafted features on many perception tasks.
In this work we focus scene labeling task with deep learning strate-
gies. We first learn a CNN (Convolutional Neural Network) to predict
contextual information. By forcing this network to capture some context
information of our choice, we aim to improve the interpretability of the
CNN and obtain meaningful feature maps. In parallel, we learn a second
model for the original task assuming that contextual information is obtain-
able from ground truth labels at training step. Finally, we combine these
networks and perform a last training phase with weakened supervision.
In traditional feature learning, the input processing is separated in
two parts as illustrated in Figure 1a. The input [ is first processed with a
function f(.), which has parameters 6y and produces a set of features F.
A predictor p(.) having parameters 6, takes the features F as input and
produces a prediction. To constrain the whole network, we propose to
split the function f into two parts: f; and f, (Fig. 1b). Function f. aims
at predicting some context and it is learned with additional supervision.
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Figure 1: Functional representation of our feature learning approaches.
(a) The target function is composed of a feature extraction function f and
a prediction function p. (b) Our approach which distinguishes the learning
of context features f, and dependent features f;.

Learning context — In this step, we start from a random initialization
9? and learn 6} where the superscript j in 6/ indicates the training stage.
The context learning step minimizes the following error function: £, =
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the ground-truth label of k’th context pixel.

The context learner is trained with a semantic label map containing
the ground truth labels of the pixels to predict. At the end of this training
step, the feature maps that correspond to the output of the Context Learner
will be specialized in modeling the neighboring context of the target pixel.

As a standard CNN focuses only on learning the class of a given patch
yi, it is hard to infer what the last layers are actually learning. In contrast,
our learner increases the interpretability of the whole network. In Fig. 2,
we show the responses of our context learner maps for some input patches
where feature maps learn to capture patch context.

Learning dependent features — The goal of this part of the aug-
mented learner is to learn the parameters (93, 91%) from a random initial-
ization of (93, 9,9) and from parameters 6 learned in the previous step.
We minimize £ while keeping Gcl fixed. Fixing 6. prevents harming the
parameters of the context learner while learning 65. We stochasticly re-
place context predictions with some true labels to regularize learning of
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Figure 2: Feature maps of context learner for some input patches.

Fine tuning — In this step, we learn final parameters 6° = (67,63, 63).
We start from an initial value of (6!,63, 91%), and we minimize £. This
idea of this overall refinement step is to weaken the level of supervision
and allow both 6 and 8y to adjust to this sudden lack of possible ground
truth contextual information which is obviously not present during the test
step.

Experiments Our approach has been tested on two scene labeling
datasets: Stanford Background and SIFT Flow. The Stanford Background
dataset contains 715 images of outdoor scenes having 9 classes. Our con-
text learner transforms a 46 x 46 patch into a 7 x 7 context output. In
the first layer, it has sixteen 7 x 7 filters and then 2 x 2 pooling opera-
tions for each feature map. Its second layer is composed of K filters (each
of size 7 x 7) each encoding the context of a specific class followed by
a 2 x 2 pooling operation. This layer has thus K output maps, where K
corresponds to the number of classes.
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Figure 3: Raw image labeling of the multiscale ConvNet, our multiscale
augmented learner and ground truth labels.

Both single scale and multiscale variants of the architecture has been
analysed. While the accuracy gain varies between singlescale and mul-
tiscale implementations, we observe that our approach consistently im-
proves both pixel and class accuracies. The gain on single-scale exper-
iments are higher compared to multiscale implementations. This brings
us to the empirical conclusion that contextual cues obtained implicitly
through appearance cues of large support size provides valuable contex-
tual information.

From a computational perspective, our approach increases the number
of parameters by less than 1% compared to the ConvNet. Overall, we
observe that our method provides better results for both the Stanford and
the SIFT Flow datasets. Some labeling results from the Stanford dataset
are shown in Figure 3. Our approach yields results that are more visually
coherent than those obtained with the plain ConvNet architecture.



