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Figure 1: Experiments on templates in BING: (a) four learned/hand-tuned
templates and their performances. (b) performance of RAND-SCORE.

The problem, generic objectness proposal, aims to reduce the candi-
date windows for object detection tasks. The popular evaluation criterion
for related methods is detection-rate/windows-amount(DR-#WIN), where
DR is the percentage of groundtruth objects covered by proposal win-
dows. An object is considered “covered” by a window only if the strict
PASCAL-overall criterion [3] is satisfied (the intersection of a proposal
window and the object rectangle is not smaller than half of their union,
so we call it “0.5-criterion” for short). Under the DR-#WIN evaluation
framework, BING [2] in CVPR2014, obtains the best performance on the
VOC2007 test set. It recalls 96.2% objects with only 1,000 proposal win-
dows. The more surprising is the method is totally a realtime one.

The authors of BING suggest that, after being resized to a fixed size
(8× 8), almost all annotated rectangle regions share a common charac-
teristics in gradients [2]. This commonness is captured by a template W
learned from training images with a linear SVM. Besides this, the subtle
differences between diverse width/height configurations are captured in a
re-weighting model. Therefore BING consists of two stages: calculating
W in stage I, and learning the re-weighting model in stage II. Further-
more, BING uses smart bitwise operations to calculate the inner product
of W and candidate windows, so to improve the efficiency.

We designed several templates by hands to substitute W , to verify
whether templates play a key role in BING. These templates become less
correlated to W in turn, but their performances on VOC 2007 test set
are very close, see Fig.1.a. Next we discarded any templates and direct-
ly assigned the scores of stage I with uniformly random values (we call
this method RAND-SCORE). Surprisingly, the performance of RAND-
SCORE is even very close to BING, as shown in Fig.1.b. It is clear that
these templates do not have as strong significance as suggested in [2].
Then what on earth makes BING performing so well?

To get the deep insight, we finished a theoretical analysis from the
view of combinatorial geometry. We try to construct a small set of win-
dows to “cover” all legal rectangles (we call it a full cover set). This is an
atypical covering problem in combinatorial geometry [1]. We proposed
four lemmas to solve it in the full paper. In conclusion, for an image of the
width M and height N, we can use s(i, j) windows of the width 2i ·

√
2 and

height 2 j ·
√

2 to cover all 2i ≤ w ≤ 2i+1,2 j ≤ h ≤ 2 j+1 rectangle regions,
where s(i, j) = ⌈ M−2i(

1−
√

2
2

)
·2i·

√
2
⌉ · ⌈ N−2 j(

1−
√

2
2

)
·2 j ·

√
2
⌉. Suppose the image size

is M = 2m,N = 2n, and the object rectangles’ widths and heights start
from 2k, then the amount of all windows in our full cover set is

m−1

∑
i=k

n−1

∑
j=k

s(i, j) =
m−k

∑
i=1

n−k

∑
j=1

⌈ 2i −1√
2−1

⌉ · ⌈ 2 j −1√
2−1

⌉= O(2−2k ·MN) (1)

Particularly, when the widths/heights of all object rectangles are at least
16, the amount is 19,600. While on the restriction of 32, we need only
4,225 windows. These amounts are far less than what people imagined
before. We call it the Achilles’ heel of the DR-#WIN evaluation frame-
work. Recall that in BING, the widths/heights of proposal windows are
doubled each time, in the same way as in Lemma 3.1-3.4. Its non-max
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Figure 2: Performance of greedy scheme and hybrid scheme: (a) cover
set of training images, and its performance on test images; (b) cover set
of test images, and its performance on training images; (c) cover set of all
images, and its performance on two sets respectively; (d) comparison of
hybrid scheme with other methods.

suppression step, 0.25 relative to the normalized size 8, is very close to
the step (1−

√
2

2 ) ≈ 0.29 in Lemma 3.2. These two settings meet our
analysis well and bring the success to BING.

In real applications, we should pay more attention to those “hot” lo-
cations/sizes instead of all possibilities. We designed a greedy scheme to
pick the “hottest” window in each round to construct an identical cover
set for all images. We also proposed a hybrid scheme to address the huge
difference between low-probability sample spaces of the training and test
sets. With the increase of the number of proposal windows, we replace the
windows in the greedy set with those of RAND-SCORE with increasing
probabilities.

In our experiments, our greedy scheme performs considerably well:
all full cover sets are reduced to about 1,000 windows, and the first win-
dows have 0.3+ DR’s in all experiments. In most time, the DR’s of our
hybrid scheme are higher than OBN and CSVM, and close to SEL and
BING. It recalls 95.68% objects with 1000 proposal windows. Especial-
ly, its DR’s are 13.99% ∼ 40.29% (relatively) higher than all other meth-
ods in average on the first ten windows. At last, the time consumptions
are all nearly zero because the major computations are to resize proposal
windows for specific images.

To sum up, what can we benefit from the two schemes for object
detection researches? We argue it needs a bigger picture to answer this
question because it depends on whether the 0.5-criterion is effective and
objective. If the 0.5-criterion is still adopted in future, the baseline should
be RAND-SCORE or our hybrid scheme instead of random guesses. Both
of them bring more challenges to future researches.
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