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Foreground segmentation plays an important role in high-level vision tasks.
Of previously reported research, a large percentage is made up of Markov
random field (MRF) based studies [2, 5, 6], in which optimal segmenta-
tion maximizes the posteriori probability given observations incorporated
with a predefined tri-map. They are current to the state-of-the-art, but
under the assumption that a sufficiently discriminative tri-map is given,
e.g. specified by user interaction [6] or supervised by using class informa-
tion [2, 5]. With a low-quality tri-map, although some attempts have been
made to improve the MRF model, very little attention has been paid to
enhancing the discernment of the tri-map itself. This constitutes the main
problem that we tackle in this paper.

In contrast to the previous studies, which depended on strong assump-
tions, our aim is unsupervised foreground segmentation under only one
weak (realistic) assumption. We assume that the location of a foreground
is a normal deviate in the image space, whose expectation lies near the
center of the image. We argue that the least Gibbs energy (LGE) can
be formulated as a goal function of a tri-map optimization problem, and
propose decomposing the complex problem into a series of tractable sub-
problems. A suboptimal optimization is gradually obtained by making
decisions between pixel cluster-level set operations.

(a) LGE = 2.61×106 (b) LGE = 2.47×106 (c) LGE = 2.42×106

Figure 1: Different tri-maps (left) exhibit differences in least Gibbs ener-
gies (LGE), incorporated in the segmentation (right) of the same image.

In terms of MRFs, the optimal segmentation X̂ maximizes the a pos-
teriori probability pertaining to an observed image Y and a tri-map T . It
is equivalent to minimizing the Gibbs energy E(X |Y,T ):

E(X |Y,T ) =∑
p

∑
α

U (α)
p (yp|T )δ (α,xp)+

∑
p,q

1−δ (xp,xq)

‖p−q‖
exp(−β‖yp− yq‖) (1)

where the right terms are known as the likelihood (first) and coherence
(second) energies at the pixel level. We define the LGE as follows:

LGE(T |Y ) = min
X

E(X |Y,T ) (2)

LGE is a function of T with a given observation Y , and is no longer de-
pendent on the segmentation X . When the distributions of foreground and
background pixels offer very low separability, as shown in Fig. 1(a), the
likelihood term becomes non-contributory and the minimization over-fits
the coherence term, resulting in a high LGE. When tri-maps lead to the
same segmentation, i.e. to equivalent coherence energies, as shown in
Fig. 1(b) and 1(c), the tri-map with the larger distribution overlap indi-
cates a higher entropy. A desired tri-map T̂ can be defined as one that
minimizes LGE(T |Y ), more specifically

T̂ = argmin
T

min
X

E(X |Y,T ) (3)

We propose a split-and-validate method for solving this problem. The
splitting is determined by a non-parametric clustering method (see the
paper). After splitting, the image is abstracted as a set of pixel clusters.
Our tri-map validation is based on two types of cluster-level operations:

(Retaining) Keeping a tri-map T unchanged, as denoted by T ← T .

(Contracting) For a tri-map T = {TB,TF}, in which TB and TF are back-
ground and foreground regions, and a pixel cluster c, subtracting c from
TF and adding c to TB, as denoted by T ←{TB∪ c,TF \ c}.

The self-validation of a tri-map is discretized to a tree-structured evo-
lution process. T (0) is preliminarily treated as a rectangle in the center.
Using Eq. 1, we can obtain LGE(T (0)|Y ). All pixel clusters {c1,c2, · · ·}
are sorted in ascending order of image-space centrality. This is motivated
by the assumption that a cluster of pixels is more likely to belong to the
foreground if its location is closer to the center of the image. T (0) is then
arguably refined by Contracting with the cluster at the top of the sorted
queue, which leads to a tentative tri-map T ′(0) and LGE(T ′(0)|Y ). An
arbitrary T is contract-able if Contracting leads to a lower LGE than Re-
taining. If so, we update T to T ′ and continue this process iteratively until
all clusters are incorporated in the validation. We obtain the segmentation
by using an iterated graph cut [6] with the refined T̂ .

Figure 2: Example of tri-map optimization and segmentation. From left
to right: initialized tri-map, segmentation of GC [6], optimized tri-map,
and our segmentation.

Figure 2 compares the segmentations initialized by the same tri-map.
Table 1 compares our method with advanced studies. More detail regard-
ing the non-parametric clustering method determining the splitting and
the experiments is described in the paper. Our conclusion is that the LGE
can be a strong cue for capturing the discriminative power of a tri-map,
and is useful when dealing with unsupervised foreground segmentation.

Table 1: Performance on Oxford Flower17 reported in the literature1.

Method MJI MNHS

Nilsback and Zisserman [5] 93.0 –
Joulin et al. [3] 75.8 86.6
Chai et al. [2] 94.7 98.3
Najjar and Zagrouba [4] 84.0 –

Aydin and Ugur [1] 87.0 –
Suta et al. [7] 90.0 89.0
Our Method 91.7 96.8
1 The definition of MJI and MNHS can be found in the paper.
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