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Defining hand-crafted feature representations needs expert knowledge, re-
quires time-consuming manual adjustments, and besides, it is arguably
one of the limiting factors of object tracking.

In this paper, we propose a novel solution to automatically relearn the
most useful feature representations during the tracking process in order to
accurately adapt appearance changes, pose and scale variations while pre-
venting from drift and tracking failures. We employ a candidate pool of
multiple Convolutional Neural Networks (CNNs) as a data-driven model
of different instances of the target object. Individually, each CNN main-
tains a specific set of kernels that favourably discriminate object patches
from their surrounding background using all available low-level cues (Fig.
1). These kernels are updated in an online manner at each frame after be-
ing trained with just one instance at the initialization of the corresponding
CNN.

Cue-1 

Cue-2 

Cue-3 

Cue-4 

Training patches 

Normalized patches 

Learned filters in Layer-1 

Training faces 

Pre-learn 

Class-Specific Cue 
Layer-1  

9, 20 × 20 
Input Patch 

32 × 32 
Layer-2  

9, 10 × 10 
Layer-3  

18, 2 × 2 

Feature Vector 
18 × 1 

Output 
Label 

Label 
2 × 1 

Convolution 
13 × 13 

Subsampling 
2 × 2 

Convolution 
9 × 9 

Subsampling 
2 × 2 

Fully  
Connected 

Input-
Image 

32 × 32 
Input-
Image 

32 × 32 
Feature 
Maps 

20 × 20 
Feature 
Maps 

20 × 20 
Feature 
Maps 

20 × 20 
Input-
Image 

32 × 32 
Input-
Image 

32 × 32 
Input-
Image 

32 × 32 

Image 
32
× 32 

32
× 32 

e Maps 
20 ×
20 

e Maps 
20 ×
20 
32
× 32 
32
× 32 

 
32
× 32 

Class-
Specific 

Cue 

Current frame 

Input-
Image 

32 × 32 
Input-
Image 

32 × 32 
Feature 
Maps 

20 × 20 
Feature 
Maps 

20 × 20 
Feature 
Maps 

20 × 20 
Input-
Image 

32 × 32 
Input-
Image 

32 × 32 
Input-
Image 

32 × 32 

Image 
32
× 32 

32
× 32 

e Maps 
20 ×
20 

e Maps 
20 ×
20 
32
× 32 
32
× 32 

 
32
× 32 

Cue-1 

Input-
Image 

32 × 32 
Input-
Image 

32 × 32 
Feature 
Maps 

20 × 20 
Feature 
Maps 

20 × 20 
Feature 
Maps 

20 × 20 
Input-
Image 

32 × 32 
Input-
Image 

32 × 32 
Input-
Image 

32 × 32 

Image 
32
× 32 

32
× 32 

e Maps 
20 ×
20 

e Maps 
20 ×
20 
32
× 32 
32
× 32 

 
32
× 32 

Cue-4 

Figure 1: Overall architecture with (red box) and without (rest) the class-
specific version.

Instead of learning one complicated and powerful CNN model for all
the appearance observations in the past, we chose a relatively small num-
ber of filters in the CNN within a framework equipped with a temporal
adaptation mechanism (Fig. 2). Given a frame, the most promising CNNs
in the pool are selected to evaluate the hypothesises for the target object.
The hypothesis with the highest score is assigned as the current detection
window and the selected models are retrained using a warm-start back-
propagation which optimizes a structural loss function.
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Figure 2: Illustration of the temporal adaptation mechanism.

Our experiments on a large selection of videos from the recent bench-
marks demonstrate that our method outperforms the existing state-of-the-
art algorithms and rarely loses the track of the target object. We evaluate

our method on 16 benchmark video sequences that cover most challeng-
ing tracking scenarios such as scale changes, illumination changes, occlu-
sions, cluttered backgrounds and fast motion (Fig. 3).
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Figure 3: The Precision Plot (left) and the Success Plot (right) of the
comparing visual tracking methods.

In certain applications, the target object is from a known class of ob-
jects such as human faces. Our method can use this prior information to
leverage the performance of tracking by training a class-specific detec-
tor. In the tracking stage, given the particular instance information, one
needs to combine the class-level detector and the instance-level tracker in
a certain way, which usually leads to higher model complexity (Fig. 4).
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Figure 4: The Precision Plot (left) and the Success Plot (right) of the
comparing visual tracking methods.

To conclude, we introduced DeepTrack, a CNN based online object
tracker. We employed a CNN architecture and a structural loss function
that handles multiple input cues and class-specific tracking. We also pro-
posed an iterative procedure, which speeds up the training process signif-
icantly. Together with the CNN pool, our experiments demonstrate that
DeepTrack performs very well on 16 sequences.


