Upper Body Pose Estimation with Temporal Sequential Forests
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The goal of this work is to recover the 2D layout of human upper body
pose over long video sequences. The focus is on producing reliable and
accurate pose estimates for use in gesture analysis and recognition.

We build on the recent successful applications of random forests (RF)
classifiers and regressors [1], and develop a pose estimation model with
the following novelties: (i) the joints are estimated sequentially, taking
account of the human kinematic chain. This means that we don’t have to
make the simplifying assumption of most previous RF methods — that the
joints are estimated independently; (ii) by combining both classifiers (as
a mixture of experts) and regressors, we show that the learning problem is
tractable and that more context can be taken into account; and (iii) dense
optical flow is used to align multiple expert joint position proposals from
nearby frames, and thereby improve the robustness of the estimates. The
processing steps are divided into two stages.

Stage 1 — Sequential body joint detection
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Figure 1: Stage 1 — sequential upper body pose estimation. (a) RGB
input. (b) Sequential detection with random forest experts: the head is
detected first, then shoulders, elbows and finally wrists. (¢) Confidence
map of body joints, with different colour for each joint (higher colour
intensity indicates stronger confidence).

In Stage 1, body joints are detected sequentially in a single video frame.
Each joint in the sequence depends on the location of the previous joint:
the head is detected first, followed by shoulders, elbows, and wrists, sep-
arately for left and right arms. Figure 1(a-c) illustrates this sequential
detection. Beginning with an RGB frame (a), the frame is first encoded
into a feature representation, shown in Figure 1(b) as an image with pixels
categorised as either skin (red), torso (green) or background (blue). For
each joint, a separate mixture of experts (random forest) votes for the next
joint location (votes shown as white lines in figure). Each expert (shown
as black dots in figure) is responsible for a particular region of the image
which depends upon the location of the previous joint in the sequence (po-
sitioned according to fixed learnt offset vectors, shown as black arrows).
The output from this is a confidence map over pixels for each joint.

Stage 2 — Detection reinforcement with optical flow

t+n

t-n

(a) Warping
Figure 2: Stage 2 — warping neighbouring confidence maps to improve
wrist joint detections. (a) Confidence maps from frames (¢ —n) and
(t +n) warped to frame ¢ using tracks from optical flow (green & blue
lines). (b) Composite map with crosses indicating modes of confidence.
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In Stage 2, confidences from Stage 1 produced at a frame ¢ are rein-
forced with temporal context from nearby frames. Additional confidence
maps are produced for neighbouring frames, and are aligned with frame ¢
by warping them backwards or forwards using tracks from dense optical
flow. This is illustrated in Figure 2(a) for wrist confidences produced at
frame (¢ —n) and (¢ +n). Finally, body joint locations are estimated at
frame ¢ by selecting positions of maximum confidence from a composite
map produced by combining warped confidences (see Figure 2(b)).

Figure 3: Pose estimates from our method on two different gesture
datasets. Top: BBC TV dataset. Bottom: Chalearn gesture dataset.

Results

Our method takes advantage of the kinematic constraints of the human
body and explicitly builds in spatial context which we know is of im-
portance, such as elbow location when detecting the wrist. The locally
trained RFs deal with less of the feature space compared to its sliding
window counterparts, which makes learning easier and leads to improved
accuracy over the state-of-the-art [1, 2].

Accuracy of the sequential forest at Stage 1 (SF) is shown to im-
prove further when incorporating output from multiple expert opinions
from neighbouring frames in Stage 2 (SF+flow) (see Figure 4). Example
pose estimates on two different datasets are shown in Figure 3.
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Figure 4: (a) SF+flow significantly reduces hand confusions. (b) SF and
SF+flow achieve significantly better constrained pose estimates than state-
of-the-art [1]. (c) Improvement in average wrist accuracy.
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