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The deformable part-based model (DPM) is commonly used for object
detection and many efforts have been made to improve the model. How-
ever, much less work has been done to discover parts for DPM. Most
DPM-based methods adopt the greedy search approach proposed in [2]
to initialize a predefined number of parts of rectangular shapes, which
may not be optimal for some object categories. Moreover, object struc-
tures are not well exploited by the approach. In [4], a three-layer spatial
pyramid structure is used to simplify the initialization of parts. An And-
Or tree model [3] is proposed to select discriminative part configurations
by a dynamic programming algorithm. Although the method can deter-
mine part sizes automatically, part shapes are still restricted to rectangles.
To address the limitations of these methods, we propose a novel data-
driven approach to discover non-rectangular parts by exploiting object
structures. Figure 1 shows rectangular and non-rectangular parts obtained
by the greedy search approach and our approach, respectively. Generally,
the parts obtained by our approach can better cover object regions.

Figure 1: Rectangular parts vs. non-rectangular parts.

The DPM of an object category has several components represent-
ing different poses or orientations. Each component consists of a root
which represents a whole object and a set of part filters which can move
relatively to the root to capture structural deformations. As the training
data only have bounding-box annotations specifying the image regions of
training examples, the model is trained by first initializing the components
and then learning model parameters in a latent structural SVM framework
(See [2] for details). As the objective function used in the framework is
not convex and as pointed out in [2] the training process is susceptible to
local minima, it is necessary to select a good initialization of the compo-
nents. In this paper, we focus on how to better initialize each component,
especially its part filters.

Let Mc be the c-th component which has Nc part filters. The compo-
nent Mc is defined by a (2Nc+2)-tuple β c =(FFF0,FFF1, ...,FFFNc ,ddd1, ...,dddNc ,b),
where FFF0 is the root filter, dddi ∈ R4 is the deformation parameters of the
part filter FFF i, and b is the bias term. Each filter FFF i is an Hi×Wi array of
n-dimensional weight vectors, where Hi and Wi are the height and width
of FFF i, respectively. To initialize Mc, we first obtain the root filter FFF0 and
then derive part filters from the root filter. The training examples are clus-
tered into several groups each of which corresponds to one component.
Let Dc be the set of object examples belonging to the c-th sub-category.
FFF0 is obtained by training a linear SVM on the object examples in Dc and
randomly sampled negative examples with each training example repre-

Figure 2: The process of our part discovery approach.

sented by histogram of oriented gradients (HOG) [1].
After F0 is obtained, we find Nc part filters that have good matching

regions on object examples in Dc and are consistent with these examples
in terms of object structure. First, we double the size of the root filter
FFF0 by interpolation, as in [2], to capture finer details. The enlarged root
filter, denoted by FFF ′0, is represented by a 2H0×2W0 array of cells Ck for
1 ≤ k ≤ 2H0× 2W0, where each cell Ck corresponds to a n-dimensional
weight vector in FFF ′0. Then, from FFF ′0, we obtain a configuration of Nc
connected part filters, Λ = {FFF i|1≤ i≤ Nc}, which satisfies the following
overlapping constraint:

O(FFF i,FFF j) =
Area(FFF i∩FFF j)

Area(FFF i∪FFF j)
< τ for i 6= j, (1)

where τ is an overlapping threshold. This constraint prevents any two part
filters from overlapping largely. We measure the fitness of the part filter
configuration Λ to object examples in Dc by

F(Λ) = SR(Λ)
λ ×SC(Λ), (2)

where SR(Λ) is the average matching response of Λ over object examples
in Dc, SC(Λ) reflects the structural consistency of Λ with these examples,
and λ is a parameter used to balance SR(Λ) and SC(Λ). Our goal is to
find a feasible part-filter configuration Λ that maximizes F(Λ). We refer
readers to the paper for details on how SR(Λ) and SC(Λ) are defined and
how the objective function is optimized. Figure 2 illustrates the process
of our part discovery approach.

We test our approach on Pascal VOC2007 and VOC2010 datasets.
Overall, our approach outperforms DPM for 19 and 17 out of 20 object
categories in these two datsets respectively, which demonstrates the ad-
vantage of the discovered non-rectangular parts over the rectangular parts
used in DPM. Implementation details and more experimental results are
given in the paper.
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