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The Problem Given six or more pairs of corresponding points on two
calibrated images, the accurate estimation of the essential matrix (EsM),
which is a 3× 3 matrix capturing the relative translation ttt and rotation
R separating the two pinhole cameras, requires solving a nonlinear opti-
mization problem subject to a set of constraints that guarantee the result-
ing 3×3 matrix has the structure of a valid EsM (i.e. E= [ttt]x R, or equiva-
lently svd(E) =Udiag(1,1,0)V′, or equivalently E′EE′ = 0.5tr(E′E)E′).
To the best of our knowledge, all existing schemes enforce the EsM con-
straints by performing the optimization on the manifold E of EsMs using
either global [2] or local parametrizations [3]. No attempts were made to
use the more straightforward approach of integrating the EsM constraint
E′EE′ = 0.5tr(E′E)E′ directly into the optimization possibly because this
3×3 matrix equation as well as the homogeneity property of the EsM (i.e.
E and cE represent the same EsM for all c 6= 0) give a total of ten (non-
linearly dependent) constraints while the number of variables in a 3× 3
matrix is only nine.

Idea To avoid this problem, we propose to use adaptive penalty meth-
ods [1] to incorporate the matrix constraint into the optimization. Penalty
methods relax the constraints (and so do not suffer from the too-many-
constraints problem) while making violating them expensive. Assuming
that f (eee) is the cost function measuring the (robust) algebraic or geo-
metric fitting error of the 9-vector eee corresponding to E and hhh2(eee) =
vec{E′EE′ − 0.5tr(E′E)E′} is the EsM constraint function, we define
the penalty-augmented cost function fc(eee) = f (eee)+0.5c||hhh2(eee)||2 where
c > 0 is called the penalty parameter. The two functions f (eee) and fc(eee)
are equal iff eee ∈ E . Otherwise, fc(eee)> f (eee). Ideally, one would set c to a
very high number or ∞ so that the minimizers of the original and penalty-
augmented problems coincide. Such a strategy would fail to locate the
(local) minimum precisely due to finite machine precision. Instead, we re-
peatedly compute the minimum of fc for a gradually increasing sequence
{ck} and we use the minimizer of fck as an initial guess for the minimizer
of fck+1 . If at iteration k the current estimate of the EsM is eeek, we compute
the update δδδ

k ∈R9 on eeek by solving the following optimization problem:

argmin
δδδ

k∈R9

fck (eee
k +δδδ

k) = f (eeek +δδδ
k)+0.5ck||hhh2(eeek +δδδ

k)||2, (1)

subject to eeek′
δδδ

k = 0 (to ensure eeek+1 stays away from zero). (2)

Solution Procedure Here we use the popular Gauss-Newton iteration to
solve the above problem. In particular, we build a convex quadratic pro-
gram (QP) approximation to the above problem by (a) replacing f with a
convex second-order Taylor approximation 0.5δδδ

k′H f (eeek)δδδ k+∇∇∇
′ f (eeek)δδδ k+

f (eeek) and (b) replacing hhh2(eeek + δδδ
k) with a linear Taylor approximation

hhhk
2 +Jk

2δδδ
k where hhhk

2 = hhh2(eeek). The resulting QP is given by:

argmin
δδδ

k∈R9

1
2

δδδ
k′(Hk

f + ckJk′
2 Jk

2)δδδ
k +(∇∇∇ f k + ckJk′

2 hhhk
2)
′
δδδ

k + const, (3)

subject to eeek′
δδδ

k = 0. (4)

where Hk
f = H f (eeek) and ∇∇∇ f k = ∇∇∇ f (eeek). Introducing a scalar Lagrange

multiplier v allows us to write the corresponding Lagrangian as:

L(δδδ k,v) =
1
2

δδδ
k′(Hk

f +ckJk′
2 Jk

2)δδδ
k+(∇∇∇ f k+ckJk′

2 hhhk
2)
′
δδδ

k+veeek′
δδδ

k+const.
(5)

The partial derivatives ∇∇∇
δδδ

k L and ∇∇∇vL must be zero at the optimal (δδδ k,v) [1].
This gives rise to the following 10×10 symmetric linear system of equa-
tions:[

Hk
f + ckJk′

2 Jk
2 eeek

eeek′ 0

](
δδδ

k

v

)
=

(
−(∇∇∇ f k + ckJk′

2 hhhk
2)

0

)
. (6)

or more compactly as Bkxxxk = bbbk. (7)
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Figure 1: Row 1: (a) Merton A image 1. (b) Merton A image 2. Row 2: (a) RMS Sampson
error for each point count with average taken over 75 different random subsets. (b) The average
of the corresponding running times.

Rather than using the LDL or LU factorizations, we use the SVD factor-
ization of Bk = USV′ to solve for xxxk as it is more numerically stable. We
then use δδδ

k to compute the new estimate eeek+1 = eeek +δδδ
k.

Controlling The Penalty Parameter Finding an effective strategy for
adapting the penalty parameter ck is the most critical ingredient for the
success of a penalty-based algorithm [1]. We consider updating ck only if
(a) we have done enough iterations (at least 3) with the current value of
ck to ensure the solution eeek has achieved some progress with the current
value of ck, and (b) the drop in the value of ||hhh2(eeek+1)||2 is found to be
not adequate, i.e. ||hhh2(eeek+1)||2 > γ||hhh2(eeek)||2 where we set γ = 0.5. If
any of the two conditions is not met, we keep ck+1 = ck. Otherwise, we
use the update rule ck+1 = min(βck,cmax) where the penalty multiplier
β > 1 controls the speed and the robustness of the convergence. We set
c0 = 10−5 and cmax = 109.

Experimental Evaluation We compared the performance of the pro-
posed scheme and existing schemes for EsM estimation using synthetic
and real data. We included in the comparison two instances of the pro-
posed penalty-based algorithm: one with the penalty multiplier β = 50
(labeled as Proposed-β = 50) and another with β = 4 (Proposed-β = 4)
to demonstrate the effect of the penalty multiplier β on robustness and
speed. The other schemes included in the comparison were (a) the overde-
termined five-point scheme (5-pt), (b) a manifold-based scheme using a
global over-parametrization eee : R3×R4→ E with the 7-D parameter vec-
tor θθθ consisting of a 3-vector representing translation and a 4-D quater-
nion encoding rotation (Global-Manifold (GM)) [2], and (c) Helmke’s
intrinsic manifold scheme using the local Cayley parametrization (Local-
Manifold (LM)) [3]. All schemes were set to minimize the Sampson cost
function. Results for one real image pair are shown in Fig. 1. The graphs
indicate that the proposed scheme (especially when β = 4) achieves gen-
erally lower error curves than the rest of the schemes. GM remains the
slowest scheme and LM remains the fastest iterative scheme with the pro-
posed scheme coming in between.

[1] Dimitri P. Bertsekas. Nonlinear programming. Athena Scientific,
1999.

[2] Richard Hartley and Andrew Zisserman. Multiple view geometry in
computer vision. Cambridge university press, 2003.

[3] Uwe Helmke, Knut Hüper, Pei Yean Lee, and John Moore. Essential
matrix estimation using gauss-newton iterations on a manifold. Int’l
J. Comput. Vision, 74(2):117–136, 2007.


