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ℓ1-Graph has been proven to be effective in data clustering, which par-
titions the data space by using the sparse representation of the data as
the similarity measure. However, the sparse representation is performed
for each datum independently without taking into account the geomet-
ric structure of the data. Motivated by ℓ1-Graph and manifold leaning,
we propose Regularized ℓ1-Graph (Rℓ1-Graph) for data clustering. Com-
pared to ℓ1-Graph, the sparse representations of Rℓ1-Graph are regular-
ized by the geometric information of the data. In accordance with the
manifold assumption, the sparse representations vary smoothly along the
geodesics of the data manifold through the graph Laplacian constructed
by the sparse codes. Experimental results on various data sets demon-
strate the superiority of our algorithm compared to ℓ1-Graph and other
competing clustering methods.

ℓ1-graph [2, 3], which builds the graph by reconstructing each datum
with all the other data, has been shown to be robust to noise and capable
of producing superior results for high dimensional data, compared to K-
means and spectral clustering. Compared to k-nearest-neighbor graph and
ε-ball graph, ℓ1-graph adaptively determines the neighborhood of each
datum by solving sparse representation problem locally. Given the data
XXX = [x1, . . . ,xn] ∈ IRd×n, ℓ1-graph seeks for the robust sparse representa-
tion for the entire data by solving the ℓ1-norm optimization problem for
each data point:

min
ααα i

∥ααα i∥1 s.t. xi = XXXααα i i = 1, . . . ,n (1)

where ααα i ∈ IRn×1, and we denote by ααα the coefficient matrix ααα = [ααα1, . . . ,αααn]∈
IRn×n with the element ααα i j = ααα j

i . Let G = (XXX ,W) be the ℓ1-graph where
XXX is the set of vertices, W is the graph weight matrix and Wi j indicates
the similarity between xi and x j . ℓ1-graph sets the n×n matrix W as

W = (|ααα |+ |αααT |)/2 (2)

where |ααα| is the matrix whose elements are the absolute values of ααα , and
then feed W as the pairwise similarity matrix into the spectral clustering
algorithm to get the clustering result.

While ℓ1-graph demonstrates better performance than many tradi-
tional similarity-based clustering methods, it performs sparse represen-
tation for each datum independently without considering the geometric
information and manifold structure of the entire data. In order to obtain
the sparse representations that account for the geometric information and
manifold structure of the data, we employ the manifold assumption [1]
and propose a novel Regularized ℓ1-Graph (Rℓ1-Graph). The manifold
assumption in this case requires that if two points xi and x j are close in the
intrinsic geometry of the submanifold, their corresponding sparse codes
ααα i and ααα j are also expected to be similar to each other. The following
objective function for Rℓ1-Graph is given below:

min
ααα,W

n

∑
i=1

∥xi −XXXααα i∥2
2 +λ∥ααα i∥1 + γTr(αααLWαααT ) (3)

s.t. W = (A◦ |ααα|+AT ◦ |αααT |)/2 ααα ∈ S

where S = {ααα ∈ IRn×n|ααα ii = 0,1 ≤ i ≤ n}, λ > 0 is the weight controlling
the sparsity of the coefficients, and γ > 0 is the weight of the regulariza-
tion term, LW is the graph Laplacian matrix constructed by the pairwise
similarity matrix W, A is a KNN adjacency matrix.

We simplified the optimization problem (3), and employ Alternat-
ing Direction Method of Multipliers (ADMM) to solve the nonconvex
optimization problem. ADMM decomposes the original problem into a
sequence of tractable subproblems which can be solved efficiently.

We demonstrate the performance of Rℓ1-Graph with comparison to
other competing methods, i.e. K-means (KM), Spectral Clustering (SC),
ℓ1-Graph and Laplacian regularized ℓ1-Graph. There are two parameters
that influence the regularization term in Rℓ1-Graph, namely the weight of
the regularization γ and the number of nearest neighbors K of the KNN
adjacency matrix. The regularization term imposes stronger smoothness
constraint on the sparse codes with larger γ and K, and vice versa. We
investigate how the clustering accuracy on ORL face database changes
when varying these two parameters, and illustrate the result in Figure 1.
We observe that the performance of Rℓ1-Graph is much better than other
algorithms over a large range of both γ and K, revealing the robustness
of our algorithm. Please refer to the paper for detailed description of our
algorithm and more experimental results.
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Figure 1: Clustering accuracy with different values of K and γ on ORL
face database. Upper: K; Down: γ
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