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In Hierarchical Multi-label Classification (HMC), rich hierarchical
information is used to improve classification performance. Global ap-
proaches learn a single model for the whole class hierarchy [3, 6]. Local
approaches introduce hierarchical information to the local prediction re-
sults of all the local classifiers to obtain the global prediction results for
all the nodes [2, 5].

In this paper, we propose a novel local HMC framework, Fully As-
sociative Ensemble Learning (FAEL). Specifically, a multi-variable re-
gression model is built to minimize the empirical loss between the global
predictions of all the training samples and their corresponding true label
observations. Let X and Y represent local prediction matrix and label ob-
servation matrix, respectively. We define W = {wi j} as a weight matrix,
where wi j represents the weight of the ith label’s local prediction to the
jth label’s global prediction. In the basic model, the objective function is:

min
W
‖Y −XW‖2

F +λ1‖W‖2
F , (1)

where the first term measures the empirical loss of the training set, the
second term controls the generalization error, and λ1 is a regularization
parameter. The above function is known as ridge regression. We have:

W =
(

XT X +λ1Il

)−1
XTY, (2)

where Il represents the l× l identity matrix.
To capture the complex correlation between global and local predic-

tion, we can generalize the above basic model using the kernel trick. Let
Φ represent the map applied to each example’s local prediction vector xi.
A kernel function is induced by K(xi,x j) = Φ(xi)

T Φ(x j). By replacing
the term X in (1), we obtain:

min
Wk
‖Y −ΦWk‖2

F +λ1‖Wk‖2
F . (3)

After several matrix manipulations [1], the solution of Wk becomes:

Wk =
(

Φ
T

Φ+λ1Il

)−1
Φ

TY = Φ
T
(

ΦΦ
T +λ1In

)−1
Y, (4)

where In represents the n×n identity matrix. For a given testing example
st and its local prediction xt , the global prediction ŷt is obtained by ŷt =
xtW . For a kernel version, we obtain:

ŷt
k = K(xt ,x)(K(x,x)+λ1In)

−1 Y. (5)

To make full use of the hierarchical relationships between different
nodes, we introduce a regularization term to the optimization function in
(1). Let R = {ri(cp,cq)} denote the binary constraint set of hierarchy
H. Each member ri(cp,cq) meets either cp =↑ cq or cp =⇑ cq, where
“ ↑ ” and “ ⇑ ” represent the “parent-child” constraint and the “ancestor-
descendent” constraint, respectively. We introduce a weight restriction
to each pair of nodes in R. Define coefficient mpq ∈ R+ for the ith pair
ri(cp,cq), so that:

wpk = mpq ∗wqk. (6)

For the global prediction of node k, the weight of node p is mpq times the
weight of node q. The value of mpq is set by:

mpq =

{
µ cp =↑ cq

µ ∗ (epq +1) cp =⇑ cq
, (7)

where µ is a positive constant and epq represents the number of nodes
between p and q. All the restrictions over the hierarchy are summarized
as: |R|

∑
ri(cp,cq)

l

∑
k=1

(
wpk−mpq ∗wqk

)2
. (8)

Figure 1: (Top) The “human” sub-hierarchy. (Bottom) The weight matrix
W ∗ learned from B-FAEL.

We introduce a sparse matrix M = [m1,m2, ...,m|R|]T , in which the ith

row mi corresponds to the ith pair in R. Each row in M has only two non-
zero entries. The pth entry is 1 and the qth entry is −mpq, all the other
entries are zero. Thus, we obtain the regularization term of the binary
constraint model:

|R|

∑
ri(cp,cq)

l

∑
k=1

(
wpk−mpq ∗wqk

)2
= ‖MWb‖2

F . (9)

Adding this term to (1), the optimization function becomes:
min
W
‖Y −XWb‖2

F +λ1‖Wb‖2
F +λ2‖MWb‖2

F . (10)

The analytical solution of the binary constraint model is given by:

Wb =
(

XT X +λ1Il +λ2MT M
)−1

XTY. (11)

Take the “human” sub-hierarchy from the extended IAPR TC-12 im-
age dataset [4] for example, Figure 1 depicts the merits of our model and
shows the contribution of hierarchical and sibling nodes on each local
prediction. The weight matrix computed indicates that each local node
influences its own decision positively while nodes not directly connected
in the hierarchy provide a negative influence.
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