Learning to Rank Bag-of-Word Histograms for Large-scale Object Retrieval
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Retrieving images of a particular query object in a large database of im-
ages is an important problem for computer vision with applications in
object discovery, 3D reconstruction, location recognition and mobile vi-
sual search. Most recent state-of-the-art large-scale image retrieval sys-
tems rely on local features, in particular the SIFT descriptor and its vari-
ants. Typically, those local descriptors are aggregated into a histogram-
based representation of the image referred to as the Bag-of-Words model
(BoW) [4]. BoW models considerably reduce the computational burden
and the memory footprint of the systems, because local descriptors are
quantised into visual words.

For BoW histograms, it is common to use simple similarity functions
such as the inner product or cosine similarity. However, such functions are
not optimal for modelling the visual similarity between BoW features and
thus lead to sub-optimal performance for retrieval [2, 3, 6]. The potential
problems are the following: a) The evidence coming from co-missing
visual features is under-estimated [2]; b) The similarity between a query
image and a database image should not be symmetric [6]; c) Statistical
properties of visual words are not taken into account [1, 3, 5].

Even though different methods have been proposed to address each
of these problems individually, none provides a satisfying solution to
properly account for all of them. Moreover, most authors propose ad-
hoc solutions by means of functions controlled by very few parameters.
These parameters are then hand-tuned or exhaustively searched on vali-
dation/test data to adapt them to each dataset. In this work, our goal is to
replace those ad-hoc similarities in measuring histograms with ones that
are specifically trained to maximize the retrieval accuracy. We propose to
use a simple and very general linear model whose weights directly rep-
resent the similarity values. We devise a variant of rank-SVM to learn
those weights automatically from training data with fast convergence and
we propose techniques to limit the weights to a tractable number to avoid
overfitting. Importantly, the flexibility of our model allows us to seam-
lessly incorporate well-known image retrieval schemes such as burstiness,
negative evidence and idf weighting, and still exploit inverted files for effi-
ciency in the large-scale setting. In our experiments, as shown in Table. 1,
our approach consistently and significantly outperforms the similarities
used in several state-of-the-art systems on 4 standard benchmark datasets.

Most of existing similarity measures [2, 3, 6] can be written in a very
general form as:

K
s(q,d) = 1(q)T(d) Y si(qi,di). M
i=1

Rather than trying to design 7 and s; manually, we propose to resort to
learning and discover the patterns of a good similarity function for image
search, automatically from training data. Looking at Eq. (1), we aim at
learning the values s;(g;,d;) directly. This is notably impractical, as each
gi and d; can be arbitrarily large. However, state-of-the-art methods use
very large visual codebook (K = 10°) leading to sparse of BoW represen-
tations, with few occurrences of any visual word in any given image. As a
result, using a truncated histogram §; = min(g;,n) with n € N* will pro-
vide an excellent approximation of the original histogram while limiting
the number of possible values of si(q,-,cfi) to (n+ 1)%. Additionally, be-
cause we learn the values of s;(g;, cf,) directly, these terms can be learned
to incorporate a contribution to the normalisation functions. This leads
to a modified similarity §; and our approximated model becomes additive
and writes as:

K K
s(g,d) = w(q)7(d) Y si(qi,di) = Y §i(Gi,dy), @)
i=1 i=1

where §;(j,1) for j,I € [0,n] are the K - (n+ 1)? parameters to learn. No-
tably, this additive approximation allows to rewrite Eq. (2) as a linear

Oxford5k® Oxford105k® Holidays® UKbench®
Cosine Similarity 0.819 (0) 0.725 (0) 0.862(0) 3.51(0)
Burstiness Weighting [3]  0.826 (0) 0.748 (0) 0.858 (0)  3.54(0)
Negative Evidence [2] 0.830 (0) 0.684 (0) 0.848 (0)  3.44(0)
Adaptive Asymmetric [6]  0.839 (1) 0.758 (0) 0.795 (0) 3.38 (0)
This paper 0.870 (9) 0.816 (10) 0.871 (10) 3.70 (10)

Table 1: Comparison to alternative similarities. We report the average
performance over the 10 splits of the data (mAP or top-4 score depending
on the dataset) and in parenthesis the number of runs where the method is
the best. In bold is the best result for each dataset.

combination of indicator functions:

non
f,‘((i,‘,d,‘) = Wié,-dA,- = Z Zwiﬂﬂ(éi = ])H(d, = l),
Jj=01=0

(3)

where w;j; = §;(j,1). In other words, if we define \¥(g,d) as the binary
vector indexed by (i, /,/) such that ¥;;;(q,d) = 1(¢; = NI(d; =1) and
define w = [w;j;]; j ;. then:

s(g,d) = w'¥(q,d). “

Importantly, Eq. (4) highlights that ¥ acts as a feature encoding for
the query-document pair (g,d) in a linear prediction model. Despite its
simplicity, this model is very general and flexible, and is able to incor-
porate many of the properties discussed in [2, 3, 6], and potentially oth-
ers, without having to explicitly model them. To illustrate this, let us
first consider the simple case of n = 1. In such case, the truncated his-
togram ¢ simply encodes the absence or presence of visual words (an
encoding often referred to as binary bag-of-words), and there are only
4 weights to learn per visual word: co-absence §;(0,0), co-occurrence
§i(1,1) and either case of mutual exclusion §;(0,1) and §;(1,0). If we
learn that §;(0,0) > §;(0,1), then not only have we implicitly learned that
co-absence of the visual word i contribute more to the similarity than mu-
tual exclusion (as argued by [2]) but also exactly by which amount. If
we learn that $;(0,1) # §;(1,0), then this implies that the ideal similarity
is indeed asymmetric [6]. Finally, learning all the weights together al-
lows to identify which visual words are more important than others, as
indicated by the relative weight of §;(1,1) and §;(1,1). Hence, it auto-
matically models re-weighting schemes such as IDF. Finally, whenn > 1,
phenomena such as burstiness [3] are also learnt.
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