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Figure 1: We automatically determine 3 orthogonal vanishing points, con-
struct vehicle bounding boxes (/eft), and automatically determine the cam-
era scale by knowing the statistics of vehicle dimensions. This allows us
to measure dimensions and speed (right) and analyze the traffic scene.

This paper proposes a method for fully automatic calibration of traffic
surveillance cameras. Our method allows for calibration of the camera
— including scale — without any user input, only from several minutes of
input surveillance video. The targeted applications include speed mea-
surement, measurement of vehicle dimensions, vehicle classification, etc.

The first step of our approach is camera calibration by determining
three vanishing points defining the stream of vehicles (Fig. 2, [3]). The
second step is construction of 3D bounding boxes of vehicles (Fig. 3) and
their measurement up to scale. In the third step, we use the dimensions of
the 3D bounding boxes for calibration of the scene scale (Fig. 4).

Figure 2: (left) Tracked points used for estimation of the 1%' VP. Points
exhibiting a significant movement (green) are accumulated. (right) Ac-
cumulation of the 2" vanishing point. Only edges excluding the vertical
ones and those with their direction towards the first VP (green) are accu-
mulated to the diamond space.

Our method for VP detection uses Hough transform based on paral-
lel coordinates [2], which maps the projective plane into a finite space
referred to as the diamond space by a piecewise linear mapping of lines.

Figure 3: Construction of vehicle’s 3D bounding box. From left to right:
tangent lines and their relevant intersections A,B,C; derived lines and
their intersections E, D, F'; derived lines and intersection H; constructed
bounding box.

The next step of our approach is construction of 3D bounding boxes
of the observed vehicles (Fig. 3). We assume that the vehicle silhouettes
can be extracted by background modeling and foreground detection and
that the vehicles of interest are moving from/towards the first vanishing
point. The 3D bounding box is constructed using tangent lines from van-
ishing points to the blob’s boundary.

Having the bounding box projection, it is directly possible to calculate
the 3D bounding box dimensions (and position in the scene) up to precise
scale. By fitting the statistics of known dimensions and the measured data
from the traffic, we obtain the scale of the scene (Fig. 4).

Camera orientation together with a know distance enables for measur-
ing of vehicle speed/size or distances in the scene. We measured several
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Figure 4: Calculation of scene scale. (left) Median (green bar) for each
dimension is found in the measured data. (middle) Scales are derived
separately based on known median car size and the final scale is derived
as the minimum from these three scales. (right) Examples of relative size
of the vehicles (yellow) and real dimensions in meters after scaling.

distances on the road plane and evaluated the error in measurements by
our approach. Similar evaluation was provided by Zhang [5], who report
average error of measurement “less then 10%”. Our average error is 1.9%
with worst case 5.6%, (Tab. 1).

dist 15m | 3m | 35m | 53m | 6m all
# 85 32 15 16 15 163
mean (%) 1.8 1.7 2.0 2.8 1.5 1.9
worst (%) 3.6 39 5.5 5.6 3.3 5.6

Table 1: Percentage error of absolute distance measurements. The error is
evaluated as |1, — Ly |/l % 100%, where I, is the ground truth value and
I,y 1s the distance measured by the presented algorithm. For each distance
we evaluate the average and worst error. The numbers in the row labeled
‘#° are the number of measurements of the given length (from 5 videos).

When measuring the vehicle speed (Tab. 2), we take into account one
corner of the bounding box which lies directly on the road). Vehicles
in the video are tracked and their velocity is evaluated over the whole
straight part of the track. The average speed of the vehicles was 75]%
and therefore 2% error causes :I:I.SkTm deviation. A similar evaluation
was provided by Dailey [1] who used distribution of car lengths for scale
calculation and reached average deviation 6.4%’" or by Grammatikopou-
los [4] whose algorithm has accuracy :I:SkTm but requires manual distance
measurements to obtain the scale.

as) [ b@B) | c(®) | d®) | e | f(5) || all(28)
mean (%) | 239 | 290 | 1.49 | 1.65 | 1.31 | 2.58 1.99
worst (%) | 3.47 | 3.63 | 3.18 | 3.77 | 2.40 | 4.26 4.26

Table 2: Percentage error in speed measurement. For obtaining the ground
truth values, we drove cars with cruise control and get the speed from
GPS. The error is evaluated as |s,, — Sgr| /S * 100%, where s¢; is speed
from GPS and s, is speed calculated by presented algorithm. The number
in parentheses stands for the number of evaluated measurements for given
video.
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