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Figure 1: We take foreground-masked sequences, pose-optimise and fuse
each of them and eventually align them to one coherent 3D model.

We propose a full 3D object reconstruction framework with a RGB-D sen-
sor, requiring no marker boards and allowing for objects to be displaced
during scanning. The proposed framework consists of three stages and
provides a novel fusion and registration procedure for coloured signed
distance fields (CSDFs) resulting in complete 3D models with high fi-
delity. It is suitable for a large variety of objects and outperforms the
state-of-the-art both in terms of visual quality and geometrical accuracy.

The first step in our pipeline is the camera trajectory estimation via
RGB-D visual odometry [5] similar to [2]. The goal is to compute the
rigid-body movement Ξ ∈ SE(3) of the camera between two consecutive
foreground-masked sensor pairs [I0,D0],[I1,D1] by minimising

E(Ξ) =
∫

Ω2

[I1(wΞ(x))− I0(x)]2dx

with a warp function wΞ : Ω2→Ω2 defined via the depth maps as wΞ(x)=
πD1(Ξ ·π

−1
D0

(x)). We move the support surface while collecting keyframes
along the way and eventually refine the trajectory globally with a pose-
graph optimisation after loop closure detection.

After one full scan and pose refinement, we refer to our final result
as a hemisphere H= {(Ii,Di,Pi)i} consisting of masked sensor pairs and
poses. We create a 3D model φ by fusing the data, analogously to [1, 3],
into a CSDF in a variational fashion with an approximate L1 minimisa-
tion. We cast our data into volumetric geometry fields fi : Ω3 ⊂ R3→ R
and colour fields ci : Ω3→ [0,1]3 and we seek the minimisers of the func-
tional

E(u,v) =
∫

Ω3

[D(f,w,c,u,v)+αS(∇u)+βS(∇v)] dx

with a data term D that strives to uphold the solution’s fidelity to all the
observations f = { f1, ..., fn},c = {c1, ...,cn} and two weighted regularis-
ers S(∇u) and S(∇v). In contrast to the original work [4], which only
fuses the geometrical fields, we also include colour information into the
formulation and solve simultaneously for both.

A suitable data term for many vision problems usually involves an
outlier-robust L1-norm whereas for regularisation purposes the total vari-
ation (TV) of the function is often employed:

D(f,w,c,u,v) =
1

ε +∑i wi
∑

i
wi · (|u− fi|+ |v− ci|) , S(∇u) = |∇u|.

Due to the problematic aspect of solving such energies, specific minimi-
sation schemes are employed (e.g. a ROF-variant or (iterated) primal-
dual solutions). An alternative has been proposed in [4] where the prob-
lematic terms have been replaced with a smooth epsL1 approximation
Γ(x) :=

√
x2 + ε . We define it similarly as

D(f,w,c,u,v)=Γ(∑
i

wi)
−1

∑
i

wi ·(Γ(u− fi)+Γ(v−ci)) , S(∇u)=Γ(|∇u|)

Figure 2: KinectFusion (top) vs. our approach (bottom). We recover
richer texture as well as geometry, even for visually poor objects.

where we regard the weighted approximate absolute differences together
with an additional normalisation factor and an approximate TV-regulariser.

Usually, one such scan does not expose the full geometry of the ob-
ject. To this end, we propose to create multiple scans of the same object
but placed differently in order to reveal hitherto unseen parts, thus acquir-
ing multiple hemispheres H j. Then the transformations Ξ j that map the
models from all hemispheres to the first one H0 need to be determined. In
order to retrieve those Ξ j, we use the reconstructed models φ j and align
them automatically using a dense approximate-L1 registration framework:

E(Ξ)L1 =
∫

Ω3

Γ(φ0(x)−φ j(Ξ(x))) dx.

We compared our method to a commercial state-of-the-art KinectFusion
implementation on eight real-life objects. Even though KinectFusion per-
formed well, it failed for some of the objects due to poor geometry leading
to tracking failure and supplied only mediocre results in terms of texture.
For two models ground-truth data was available and was used to measure
the geometrical error of the reconstructions. We show that we tremen-
dously boost the geometrical and textural fidelity for all scanned objects
due to the pose graph optimisation and the L1 sensor fusion.
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