Robust segment-based Stereo using Cost Aggregation
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Introduction = Most segment based stereo methods estimate disparity
by modeling color segments as 3-D planes [2]. Inherently, such methods
are sensitive to segmentation parameters and intolerant to segmentation
errors. Two main dependencies of these methods on the underlying seg-
mentation algorithm are: size of segments used for estimating planes, and
assignment of a single plane to the whole segment. Specifically, in the
case of under-segmentation, there is a higher chance of merging multi-
ple objects (with multiple plane surfaces) into a single segment. Conse-
quently, planes estimated using these segments are erroneous. The effect
propagates to the disparity map, wherein a larger segment encompassing
multiple objects is incorrectly represented by a single disparity plane. In
the over-segmentation case, which gives smaller color segments, the esti-
mated planes may be unreliable, leading to an inaccurate disparity map.
Popular segment based methods try to solve this problem by re-fitting
the planes on grouped segments, in an iterative manner [2]. We propose
a novel algorithm for generating sub-pixel accurate disparities on a per-
pixel basis, thus alleviating the problems arising from methods that esti-
mate disparities on a per-segment basis. The proposed method computes
sub-pixel precision disparity maps using the recent minimum spanning
tree (MST) [4] based cost aggregation framework. Since the disparity
at every pixel is modeled by a plane equation, the goal is to ensure that
all pixels belonging to a planar surface are labeled with the same plane
equation. We show that using a reduced and refined set of planes as can-
didate labels in the aggregation framework ensures homogeneous labeling
within a color segment.

Proposed Method  Our method computes an initial set of plane equa-
tions (label set) by fitting planes inside a color segment using the con-
sistent disparities from an initial disparity map. The initial disparity map
may be generated using any local or global algorithm. These plane equa-
tions form the initial label set and a matching cost volume is computed
over this set for every pixel. This cost volume is aggregated using MST
based cost aggregation framework and a WTA over the aggregated cost
volume gives the initial labeling. The number of labels in the initial set
is of the order of the number of segments, with a plane estimate for every
segment. The initial labeling is used along with the color segmentation
to filter and generate a reduced set of planes. This framework of plane
filtering followed by re-labeling leads to a more accurate disparity map.
In addition, segment analysis is also used to modify the plane matching
cost. We weigh the pixel matching cost by a support factor, where the
support factor is derived from the distribution of plane labels within the
color segment, as follows:
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where p(p,q) computes the pixel dissimilarity between the pixels p and
g, ng is the number of pixels in the segment s that contains p, n s is the
number of pixels in the segment s that are assigned plane label /, and 7 is
a constant. This cost update adds a bias towards locally dominant labels,
whilst suppressing labels with smaller support. The labeling derived from
modified cost volume with reduced set of labels is more locally homoge-
nous than previous labelings. The above matching cost modification is
also used in occlusion filling step, which encourages labeling the occlu-
sion region with a dominant plane label in the color segment the occlusion
belongs to. The core algorithm block of plane labeling can be iterated on,
in a feedback loop. The sub-pixel precision disparity map generated from
the final plane labeling is used along with the initial color segments to re-
estimate the set of planes. While a convergence criteria based on change
in absolute disparities between iterations can be used, we have empirically
found that convergence is reached in 3 iterations.

Results  We report the experimental results using the proposed method
on the Middlebury set [3] and also on natural scenes. We demonstrate the
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Figure 1: Effect of segmentation variance on disparity (Cones): (a) 266 segments,
error = 2.58, rank = 23; (b) 507 segments, error = 2.10, rank = 3; (c) 836 segments,
error = 2.16, rank = 6;

robustness of proposed method to the quality of the initial disparity map
by considering two different methods for creating input fronto-parallel
disparity maps. First, we initialize our method with a disparity map gen-
erated using simple WTA, without cost aggregation. The overall Middle-
bury rank [3] with this initialization is 21 after three iterations of our algo-
rithm. Next, we initialize our method with the disparity generated by [4].
Three iterations of our algorithm using this initialization leads to an im-
provement in overall Middlebury rank from 43 to 11. Additionally, we
report the lowest average percentage of bad pixels (3.58), of all methods
in the Middlebury evaluation. The results indicate that our method adds a
refinement step that is robust and can be added to any local or global algo-
rithm generating fronto-parallel disparities. The recent method of Bleyer
et al. [1] which also estimates a plane assignment per pixel takes 1 minute
on an average to compute a disparity map on the Middlebury. The aver-
age run-time of our method on the Middlebury set is 25 seconds on a 2.67
GHz Intel Core i7 CPU with 8 GB memory.

Next, we demonstrate the robustness to segmentation parameter vari-
ation. The minimum segment size parameter in mean-shift segmentation
is varied to generate varying segmentation maps. Our method is robust
to these variations, resulting in accurate disparity maps in all instances
as shown as shown in Fig. 1 of Middlebury Cones image. Observing the
bottom right corner of the disparity maps in Fig. 1(a), 1(b), the pencils
belong to a segment that spans multiple objects. Despite this leakage our
algorithm is able to recover and assign correct disparities. The methods of
[2] inherently generate labels on a per-segment basis, leading to a lower
tolerance for such variations.
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