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Figure 1: A unified approach to foreground/background video segmentation
in unconstrained videos. Our algorithm can handle in a single framework video
sequences which contain highly non-rigid foreground and background motions,
complex 3D parallax as well as simple 2D motions and severe motion blur.

We address the problem of Foreground/Background (fg/bg) segmentation
of “unconstrained” video. By “unconstrained” we mean that the moving
objects and the background scene may be highly non-rigid (e.g., waves
in the sea); the camera may undergo a complex motion with 3D parallax;
moving objects may suffer from motion blur, large scale and illumina-
tion changes, etc. Fig. 1 shows a few such examples. Most existing seg-
mentation methods fail on such unconstrained videos, especially in the
presence of highly non-rigid motion and low resolution. Unconstrained
video has thus become the focus of most recent video segmentation meth-
ods [5, 6, 9, 13].

In this paper, we suggest a simple yet general algorithm for per-
forming fg/bg video segmentation, which handles complex unconstrained
videos. We cast the video segmentation problem as a voting scheme on
the graph of similar (“re-occurring”) regions in the video sequence. ‘Re-
occurring’ regions can be quite far both in space and in time, but are con-
strained to be close in the appearance feature space. We start from crude
saliency votes at each pixel, and iteratively correct those votes by “consen-
sus voting” of re-occurring regions across the video sequence. The power
of our consensus voting comes from the non-locality of the region re-
occurrence, both in space and in time – enabling fast propagation of
diverse and rich information across the entire video sequence. This
enables the correction of large errors in the initial fg/bg votes.

In contrast to trajectory-based methods [1, 2, 3, 4, 7, 8, 10, 11],
we do not try to explicitly estimate long-term correspondences via flow
estimation or tracking, but rather obtain long-term “probabilistic” corre-
spondences using re-occurring regions across distant frames. This avoids
the inherent uncertainties of explicit optical flow estimation, whose errors
tend to accumulate over time. Similarly, MRF-based video segmentation
methods [5, 6, 9, 13] tend to propagate information only locally in space-
time. Their temporal links are based on optical-flow, whose rapidly accu-
mulated errors induce weak (often zero) weights between related parts in
faraway frames. The segmentation performance of video-MRF methods
thus strongly depends on the quality of their initial fg/bg data term. How-
ever, fg/bg initializations tend to be very noisy, whether based on mining
moving object proposals [5, 6, 13], or based on motion saliency maps [9]
(especially in unconstrained low-quality videos). Therefore, current video
segmentation methods encounter difficulties in such challenging videos.
In contrast, our non-local consensus voting allows us to start with very
‘noisy’ fg/bg votes, and clean them rapidly according to ‘consensus vot-
ing’ of distant re-occurring regions.

Qualitative and quantitative experiments indicate that our approach
outperforms current state-of-the-art methods. Some visual examples can
be found in Fig. 2. Full videos can be found on our project website
www.wisdom.weizmann.ac.il/~vision/NonLocalVideoSegmentation.html.
Empirical comparisons on the SegTrack Dataset [12] can be found in the
paper.

Figure 2: Visual comparison of results. Visual comparisons to [9, 13] using their
publicly available code. The 3 first sequences are from the SegTrack dataset and
the rest are new challenging sequences. For ‘Bmx’ and ‘Salta’, we show results of
[13] using object selection without Grab-Cut (whereas for all other sequences with
Grab-Cut), since these settings gave best results for [13]. See full videos on our
Project Website (link in the text).
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