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The variational level set method [9] is still one of the most widely used
methods in computer vision – especially for image segmentation 1. This
popularity might seem surprising, because variational level set segmenta-
tion is known to be non-convex, e.g., [3]. All the more, because since the
seminal work of Chan et al. [3] a lot of research has been carried out in
order to develop efficient methods for solving convex models for image
segmentation, cf. [1, 2, 5].

The non-convexity of the variational level set approach is caused by
the usage of continuous but non-convex approximations of the Heaviside
and Dirac distribution for defining area and boundary integrals. This non-
convexity is, however, not always a bane, because variational level set
formulations for localized active contours models [6] or image segmenta-
tion in the presence of intensity inhomogeneities [7] make extensive usage
of smeared-out Heaviside and Dirac distributions. As a consequence, it is
still of interest to develop efficient methods for the non-convex variational
level set method for image segmentation, which is the goal of this paper.
Thereby, we will consider so-called Sobolev gradient flows, which have
recently been shown to be superior to classical L2-based gradient flows
[4, 8]. Inspired by [10], we extend these approaches by changing the no-
tion of distance in H1. The main observation which leads to the proposed
approach is that standard gradient for variational level set segmentation
take the form

∇E(φ(x)) = F(x, I(x),φ(x),∇φ(x)), (1)

where E is the energy to be minimized, I denotes the image to be seg-
mented, and φ is the level set function. As a consequence, the gradient
does not only inherit the very local behavior of the image, making the
resulting level set evolution prone to get stuck in local minima, but also
varies significantly w.r.t. to the individual problem dimensions, i.e., pix-
els. Both of the issues can be cure with the proposed approach which
essentially projects this gradient into a Sobolev space endowed with a
carefully chosen inner product. Thus, the minimizing gradient flow in
the Riemannian Sobolev space exhibits a significantly improved conver-
gence, compared to gradient flow in H1. This advantage in convergence
translates directly to an improvement of the overall runtime, cf. Fig. 1.
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Figure 1: The proposed generalization (a) results in efficient Rieman-
nian Sobolev flows, which provide accurate results (b), however with sig-
nificantly improved convergence and overall runtime (c). Every 5th itera-
tion is marked with a +.
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