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Overview

In video segmentation, disambiguating appearance cues by grouping sim-
ilar motions or dynamics is potentially powerful, though non-trivial. Dy-
namic changes of appearance can occur from rigid or non-rigid motion,
as well as complex dynamic textures. While the former are easily cap-
tured by optical flow, phenomena such as a dissipating cloud of smoke, or
flickering reflections on water, do not satisfy the assumption of brightness
constancy, or cannot be modelled with rigid displacements in the image.
To tackle this problem, we propose a robust representation of image dy-
namics as histograms of motion energy (HoME) obtained from convolu-
tions of the video with spatiotemporal filters. They capture a wide range
of dynamics and handle problems previously studied separately (motion
and dynamic texture segmentation). They thus offer a potential solution
for a new class of problems that contain these effects in the same scene.
Our representation of image dynamics is integrated in a graph-based seg-
mentation framework [3] and combined with colour histograms to repre-
sent the appearance of regions. In the case of translating and occluding
segments, the proposed features additionally serve to characterize the mo-
tion of the boundary between pairs of segments, to identify the occluder
and inferring a local depth ordering. The resulting segmentation method
is completely model-free and unsupervised, and achieves state-of-the-art
results on the SynthDB dataset for dynamic texture segmentation, on the
MIT dataset for motion segmentation, and reasonable performance on the
CMU dataset for occlusion boundaries.

Proposed approach

Our approach to identify motion is based on existing work on steerable
spatiotemporal filters [1, 2]. Similarly to 2D filters used to identify 2D
structure in images (e.g. edges), these 3D filters can reveal structure in
the spatiotemporal video volume. We employ Gaussian second derivative
filters G24 and their Hilbert transforms H24. They are both steered to a
spatiotemporal orientation parameterized by the unit vector 6 (the sym-
metry axis of the G2 filter). They are convolved with the video volume V
of stacked frames, and give an energy response

Eg(x,y,t) = (G2 V) + (H25xV)* . (1)
In the frequency domain, a pattern moving in the video with a certain di-
rection and velocity correspond to a plane passing through the origin. We
obtain a representation of image dynamics by measuring the energy along
a number of those planes, obtained by summing responses of filters con-
sistent with the orientation of each plane. The resulting motion energy
ME along the plane of unit normal 7 is given by
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where N=2 is the order of the derivative of the filter, and @,- are filter
orientations whose response lie in the plane specified by 7i (see [1] for de-
tails). This provides a representation of dynamics only, marginalizing the
filter responses over appearance. The measurements MEy;, can be com-
pared to the extraction of optical flow, since each 7; specifies a particular
orientation and velocity (e.g. patterns moving rightwards at 2 pixels per
frame). The complete set of measurements ME;, is potentially capable
of representing multiple, superimposed motions at a single location, of-
fering definitive advantages over optical flow. Using the observation that
motion- and color-based segmentation are two intrinsically similar prob-
lems, we adapt the segmentation algorithm of [3] to use our representation
of motion. In addition to the original color histograms that represent the
appearance of regions, we similarly accumulate our features into motion
histograms (as in [3]). These motion histograms have 2 dimensions, cor-
responding to the (spatial) orientations and (spatiotemporal) velocities of
the different 7; considered. The agglomerative segmentation iteratively
produces results at decreasing levels of granularity.
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Figure 1: We represent dynamics in regions of the video with histograms
of motion energies (HoME) measured at various space-time orientations.
They are combined with colour histograms in a graph-based segmentation
framework [3]. Post segmentation, HOMEs are additionally used to com-
pare the motion of boundaries with their adjacent segments’. We thereby
identify the occluders and infer a local depth ordering.
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Figure 2: Actual HOME:s of real sequences, visualized as 2D histograms,
of image (spatial) orientations and (spatiotemporal) velocities (lighter
colours represent higher velocities; a limited set of velocities is repre-
sented for compactness). (Left) The background is mostly static with
a uniform range orientations, whereas the moving car produces a single
mode in the histogram. (Right) The sea waves exhibit multiple motion
modes; the upwards motion of the flame is more simply defined.

Figure 3: Motion segmentation (MIT dataset); input frame, ground truth,
and segmentation. Different objects are correctly segmented, whether
from their intrinsic motion (first two examples) or different relative mo-
tion induced by parallax and a translating camera (last two examples).

Figure 4: Segmentation of dynamic textures (SynthDB dataset). Static

appearance of different textures may be very similar, and image dynamics
are then crucial to distinguish them.
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