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Abstract

In this work we present a method for clustering large unordered sets of cameras. Our
method uses camera view information available from Structure-from-Motion (SfM) for
computing a set of overlapping clusters suited for Multi-View Stereo (MVS) reconstruc-
tion. Our formulation of the problem uses the game theoretic model of dominant sets to
find competing clustering solutions with computational simplicity. The overlapping solu-
tions ensure more robust partial reconstructions. Experimental evaluations show that our
method produces more regular cluster and overlap configurations with respect to the state
of the art. This allows more scalable and higher quality reconstructions, while speeding
up 6 times with respect to a MVS which uses all images at once.

1 Introduction
The millions of images available on the Internet and community websites such as Flickr,
Panoramia, etc. created the opportunity to build models of any known place or object in
the world. Advanced computer vision techniques have been developed for this purpose and
the state-of-the-art made great progresses in the last years: local features [11] can be accu-
rately matched among images. Structure-from-Motion (SfM) algorithms [16, 18] can jointly
estimate camera parameters and 3D point positions of a sparse reconstruction. Multi-View
Stereo (MVS) produces dense and accurate 3D clouds [13, 14] from which sophisticated
algorithms can reconstruct high-detailed surfaces [8]. Given an unordered image collection
downloaded with a keyword search (e.g. "Notre Dame"), these techniques succeed to create
impressive 3D reconstructions [1, 3].

With an incredibly large available dataset as is the Internet, scalability is a great issue.
Many of the modern SfM and MVS algorithms work by using the whole set of available
image at once, which renders the reconstruction prohibitive when the number of images
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Figure 1: The overall scheme of a reconstruction using camera clustering.

grows. In large-scale reconstructions it is thus important to partition the images in clusters,
covering different parts of the scene. This results in two benefits - reduced runtime on a
single machine due to the smaller dimensions of the clusters and the possibility to split the
processing across multiple machines for even further speedup.

In this work, we focus on the scalability of MVS and we propose a novel view clustering
method (see Fig.1). Our method uses the information of camera geometry available from a
previous SfM step and produces overlapping clusters of cameras with a desired maximum
size and level of overlap. Overlap is important for reaching a well-covered reconstruction
near cluster boundaries. We formulate our problem using the game theoretic model of dom-
inant sets [12] which allows us to exploit well-founded results from game theory to find
clustering solutions with great computational simplicity. Our algorithm produces more reg-
ular cluster and overlap configurations with respect to the state-of-the-art method [6] and
allows scalable and high-quality reconstruction.

The paper is structured as follows: we present related works in Section 2. We introduce
the proposed method in Section 3. Qualitative and quantitative evaluations are shown in
Section 4, while in Section 5 we discuss the future work and conclude the paper.

2 Related work

The problem of scalability for large-scale 3D reconstruction has already been addressed in
other works. Methods have been developed for scaling both Structure-from-Motion (SfM)
and Multi-View Stereo (MVS) algorithms.

Scalability in SfM. Snavely et al. [17] find skeletal sets of images from a given un-
ordered collection which provides a good approximation of the SfM reconstruction using
all the images. Their method relies on the estimation of the reconstruction accuracy be-
tween pairs of overlapping images, from which a graph is constructed and the skeletal is
found by a maximum-leaf t-spanner algorithm. Li et al. [10] find a small subset of iconic
images that capture all the important aspects of the scene. Their method proceeds in an incre-
mental fashion, initially applying 2D appearance-based constraints to loosely group images,
and progressively refining these groups with geometric constraints to select iconic images
for a sparse visual summary of the scene. Their system is also suited for summarization,
browsing and recognition. Crandall et al. [2] propose an MRF formulation for SfM which
finds a coarse initial solution and then improve that solution using bundle adjustment. Their
formulation naturally incorporates various sources of information such as noisy geotags or
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vanishing point estimates. Conversely to these works, our work deals with the scalability
for MVS and takes advantage of camera and 3D points SfM information for dividing the
cameras in groups suited for reconstruction. Hence, it could be integrated with any of the
methods presented above.

Scalability in MVS. Clustering and selection techniques have been proposed for address-
ing MVS scalability. In their selection method, Hornung et al. [7] rely on coverage and vis-
ibility cues to guarantee a minimum reconstruction quality and then refine the most difficult
regions using photo-consistency. Tingdahl et al. [18] reduce the set of initial views relying
on depth maps data. Ladikos et al. [9] propose a spectral clustering approach which incor-
porates scene and camera geometry to build a similarity matrix and then uses mean shift
to automatically select the number of clusters. Furukawa et al. [6] first remove redundant
images and then build a graph representation of remaining cameras, dividing them into clus-
ters through normalized-cut while respecting a constraint on the maximum size of a cluster.
As a final step, they run an image addition process that creates overlaps between clusters to
respect a coverage constraint.

Our work deals with camera clustering before MVS to ensure well-separated parts. In
addition, any image selection strategy could be incorporated in our algorithm and performed
separately within each cluster. We explicitly developed our method with an easy integration
of selection in mind. Differently from [9], our work produces overlapping clusters and al-
lows the setting of a maximum cluster size. As in [6], we model the camera set as a graph,
but in contrast we solve for clusters using dominant sets. Dominant sets [12] are a gener-
alization of the notion of a maximal clique (defined for unweighted graphs) in the context
of edge-weighted graphs. The main property of a dominant set is that the overall similarity
among internal nodes is higher than that between external and internal nodes. That is the
reason why they turn out to be good and compact clusters. One great advantage of using
dominant sets is the computational simplicity: dominant sets can be found using straight-
forward optimization techniques such as replicator equations developed by the game theory
community [20], which can be implemented with few lines of code and executed efficiently.

An additional advantage of using dominant sets clustering over other methods like [4, 15]
is that overlaps can be quite naturally integrated [19]. In our method we define a specified
number of overlapping cameras for every cluster and we force them to be on cluster bound-
aries. Being careful not to remove overlapping cameras, this feature allows any selection to
be computed independently on every cluster without worrying about inter-cluster coverage,
thus avoiding the need for the final image addition step as in [6].

3 Camera clustering

The goal of our camera clustering is to produce an appropriate number of overlapping clus-
ters. Each cluster can then be processed independently by the consequent MVS or selection
methods for speed up. These benefits can be exploited on a single machine or across multiple
machines. Hence, each cluster size is limited by the memory capabilities of the machine.

In this section we will discuss the four parts of our method: clustering constraints, the
similarity definition between cameras, our solution using dominant set clustering, and the
enforcing of overlapping cameras.

Citation
Citation
{Hornung, Zeng, and Kobbelt} 2008

Citation
Citation
{Tingdahl and {Van Gool}} 2011

Citation
Citation
{Ladikos, Ilic, and Navab} 2009

Citation
Citation
{Furukawa, Curless, Seitz, and Szeliski} 2010

Citation
Citation
{Ladikos, Ilic, and Navab} 2009

Citation
Citation
{Furukawa, Curless, Seitz, and Szeliski} 2010

Citation
Citation
{Pavan and Pelillo} 2007

Citation
Citation
{Weibull} 1995

Citation
Citation
{Frey and Dueck} 2007

Citation
Citation
{Shi and Malik} 2000

Citation
Citation
{Torsello, Bulo, and Pelillo} 2008

Citation
Citation
{Furukawa, Curless, Seitz, and Szeliski} 2010



4 MAURO, RIEMENSCHNEIDER, VAN GOOL, LEONARDI: CAMERA CLUSTERING

3.1 Clustering constraints
Generally in clustering, each cluster should satisfy two criteria: 1) All objects inside a cluster
should be highly similar to each other. 2) All objects outside a cluster should be highly
dissimilar to the ones inside.

In our work we define that two cameras should be in the same cluster if they see similar
parts of the scene. Further, the clustering should satisfy three additional constraints:

• minimum size constraint: every cluster must contain at least three cameras, for a robust
dense stereo.

• maximum size constraint: every cluster must be smaller than a specified value Nsize.
This constraints allows to run memory expensive dense reconstructions on machines
with limited memory capabilities.

• overlap constraint: every cluster must define a number Noverlap of overlapping cam-
eras with other clusters. This procedure improves the density of the reconstruction at
the "borders" of a cluster. It also allows to run a selection method independently on
each cluster without creating holes between different sets. By setting the overlapping
cameras as "non removable", the connectivity between clusters is guaranteed.

We model our problem as a graph, where the nodes represents the cameras and the edges
represent the similarity between views. This allows us to adopt the well-studied dominant
sets formulation from graph theory to find a solution to the clustering. Dominant sets also
offer the possibility to extend the clustering algorithm quite naturally in order to manage all
the constraints jointly.

3.2 Similarity matrix
We are given a set C of N cameras and a 3D sparse point cloud P resulting from Structure-
from-Motion (SfM). Here we define a N×N symmetric matrix W of pairwise similarities
between cameras. Considering a pair of cameras (Ci,C j), we note as Vi and Vj the sets of
visible points from camera i and j respectively. Then the similarity is then defined as

wi j =
∑p∈(Vi∩V j) wαi jp

|Vi∩Vj |
(1)

where p ∈ P and wαi jp is dependent on the angle α between the viewing directions
−−−→
Ci− p

and
−−−→
Ci− p and is defined as

wαi jp = exp(−
α2

i jp

σ2 ) (2)

αi jp = arccos
(Ci− p)T (C j− p)
‖Ci− p ‖‖C j− p ‖

(3)

There is an angle limit between 30◦ and 40◦ beyond which the same point is difficult to
match among different images [11]. We thus set σ = 30◦ in our experiments. The denomina-
tor in Eq. 1 normalizes the score with respect to the number of common visible points. Since
the SfM point cloud might be non-uniformly dense, by normalizing the similarity measure
we avoid any bias towards denser regions of the structure.
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(a) High ε (= 0.1) (b) Low ε (= 0.00001) (c) Selected ε (= 0.001)

Figure 2: Clustering cameras on the Hall dataset with different stopping values ε . Too high
values (ε = 0.1) generate imprecise clusters, while too conservative values (ε = 0.00001)
produce over-segmentation and single-camera clusters.

3.3 Dominant set clustering
Dominant set clustering partitions the graph G = (V,E) into each dominant set. A dominant
set is the most coherent subset of the graph nodes. The clustering works by iteratively evalu-
ating the coherency of the graph nodes based on the similarity matrix W0, where W0 is equal
to the W matrix without any self-loops, i.e. with zeros along the main diagonal.

The assignment of each camera is then determined by the participation vector x, which
is of length N as the number of cameras. This participation vector expresses the level of par-
ticipation of the corresponding camera in the cluster. Since we are interested in overlapping
clusters, the probabilistic nature of the level of participation is beneficial. Each participation
value is greater than zero for all nodes relevant to the dominant set. The algorithm for finding
a dominant set (a cluster) is the following:

1. Initialize all elements of x to 1/N;

2. Evolve the system with the replicator equation

xi(t +1) = xi(t)
(W0x(t))i

x(t)TW0x(t)
(4)

3. Stop when
x(t +1)TW0x(t +1)−x(t)TW0x(t)< ε (5)

When the algorithm terminates, the participation vector x has zero values for non-relevant
nodes and values above zero for nodes in the dominant set. A single run of clustering sep-
arates the graphs in two groups: a dominant set and the rest of the graph. We obtain a
multi-cluster division by iteratively running the method on the remaining set of cameras,
until no further separation is possible.

Different choices of the stopping criterion ε affect the performance of clustering: too
high values generate imprecise under-segmented clusters, too low values lead to over-seg-
mentation. An example is shown in Fig. 2. In all our experiments we set ε = 0.001 as this
resulted in a good tradeoff between the two conflicting issues for all datasets.

3.4 Satisfying the constraints
Satisfying the two size constraints is straightforward: for the minimum size constraint, if
a cluster contains only 1 or 2 cameras, we add them to the clusters containing the most
similar cameras according to W0. As regards the maximum size constraint, if the generated
dominant set is bigger than Nsize, only the camera corresponding to the Nsize highest values
in the participation vector x are selected.
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(a) Non-diverse overlaps (Noverlap = 2) (b) Diverse overlaps (Noverlap = 2)

Figure 3: Comparison of overlap configurations on the Church dataset with and without
diverse selection, where the overlapping cameras in the highlighted region are missing.

(a) CMVS (b) Ours (Noverlap = 0)

(c) Ours (Noverlap = 2) (d) Ours (Noverlap = 4)

Figure 4: Camera clusters on the Hall dataset. Overlapping cameras in gray.

The overlap constraints requires a more detailed explanation. A first idea could be to
define as overlapping cameras of a cluster the Noverlap images corresponding to the lowest
participation values, which usually correspond to cameras at the borders of a cluster. How-
ever, this strategy could lead to a drawback: as you can see from Fig. 3, in some cases - e.g.
with semi-structured cameras as in Hall or Church dataset - each cluster has two borders. If
one selects two cameras with such a simple approach, it could happen to select both cameras
lying on one border, and leaving the other one uncovered. We thus need to select a set of
diverse overlapping cameras. Given a participation vector x resulting from an iteration of
dominant sets, we select Noverlap overlapping images as follows:

1. If we are selecting the first overlapping camera, we choose the one corresponding to
the lowest participation value.

2. Otherwise, we choose among the remaining cameras in the dominant set the least
similar image to the previous selected one (according to the similarity matrix W ).

This procedure is continued until the desired number of overlapping cameras is reached.
The proposed modification leads the overlapping cameras to be chosen with an alternation
from one border to another on subsequent selections, producing a set of diverse border cam-
eras. At the end of the procedure, there will exist two borders for semi-structured data, and
may exist multiple overlapping borders for unstructured data. When selecting an overlap-
ping image, we always choose among cameras which were not already chosen in previous
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Algorithm #
Clusters

#
Overlap
cameras

#
Dense
points

#
Dense

points (full)

Coverage
(%)

PMVS
Runtime

PMVS
Runtime

(full)

H
al

l

CMVS 5 5 543579 98.9 3420
Ours (Noverlap = 0) 5 0 502219 437074 98.0 2863 4404
Ours (Noverlap = 2) 5 10 560945 99.8 3520 (1.54)
Ours (Noverlap = 4) 5 20 636895 99.9 3995

C
hu

rc
h

CMVS 6 10 447966 97.1 2974
Ours (Noverlap = 0) 7 0 373196 315320 97.0 2664 5102
Ours (Noverlap = 2) 7 14 444228 97.2 3188 (1.92)
Ours (Noverlap = 4) 7 28 508864 97.8 3656

N
ot

re
D

am
e CMVS 28 85 888587 98.8 16934

Ours (Noverlap = 0) 13 0 829673 807200 98.6 9874 63615
Ours (Noverlap = 2) 13 26 879347 98.8 10660 (6.44)
Ours (Noverlap = 4) 13 52 921302 98.9 11375

Table 1: Evaluation of the proposed clustering method with Noverlap = 0,2,4. Runtimes are
in seconds. The numbers between brackets are the speed up factor obtained when running
the PMVS reconstruction on clusters without overlap compared to the full set at once.

dominant sets iterations. As a result, the size of the overlapping camera set at the end of the
Nclusters clustering iterations is always equal to Nclusters×Noverlap.

4 Experimental Results
The goal of camera clustering is to separate a given set of images in different groups which
are suitable for partial reconstructions. We want to find good clusters to speedup the dense
reconstruction and determine regular overlaps to maximize the quality at every border, while
respecting the hard constraints on cluster size. For this we show both quantitative (mea-
suring the reconstruction quality and the runtimes) and qualitative results (illustrating the
compactness of the clusters and the overlaps configuration).

4.1 Quantitative evaluation
For precise quantitative results, we require a ground truth, which is not readily available
as there is no "optimal clustering" for a given camera set. In this work, for every dataset
we reconstruct a dense 3D reconstruction with the Patch-based Multi-View Stereo (PMVS)
method [5] using the full set of images at once. This dense point cloud is defined as ground
truth and our measurements are relative to it. We then test different clustering strategies by
comparing the results of PMVS on different cluster configurations. The goal is to compare
the reconstruction quality and the runtime of the dense reconstructions on the clustered cam-
eras with respect to the reconstruction using the full set of images. We also compare our
method with the image clustering method in CMVS proposed by Furukawa et al. [6], for
which the code is available. As CMVS does also image selection as initial step before clus-
tering, we modified the source code to turn the selection off. This is the fairest comparison
for clustering, as our clustering method does not include image selection.

We use the number of PMVS points and the coverage as metrics for comparison. Given
a ground truth point cloud G, and a point cloud P , coverage is computed as follows: for
every point gi in G, we evaluate the distance dGP to the nearest point in P . The point gi
is "covered" if such distance is below a given threshold dGP. The coverage metric is given
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(a) CMVS (b) Ours (Noverlap = 0)

(c) Ours (Noverlap = 2) (d) Ours (Noverlap = 4)

Figure 5: Camera clusters on the Church dataset. Overlapping cameras in gray.

by the percentage of covered points in G. We set dGP = 4R as threshold, where R is the
average distance between points and their nearest neighbors in G. We test our method on
three datasets: Hall (60 images), Church (98 images, collected by us) and Notre Dame (685
images). In Table 1 we show the results of our evaluations.

Reconstruction quality. We obtain similar or better reconstruction qualities w.r.t. CMVS
when using overlaps of size 2 or 4 on all clusters. Compared to the PMVS computed on the
full set, there is no quality loss: we obtain higher densities and coverage is almost perfect.
Coverage increases with the level of overlap, as expected, reaching ≈ 100% on all datasets.

Runtimes. Conversely, we achieve significant speed-up factor on all the datasets using
clusters, up to 6.44 achieved on the Notre Dame set. We run our tests and estimated runtimes
on a single machine with a 2.67 GHz processor and 4 GB of RAM. We highlight, as a further
advantage of using clusters, that running the dense reconstruction on the large Notre Dame
dataset on the same machine using the full set of images together would have been infeasible
due to memory requirements. Runtime on the full set in Table 1 is in fact estimated recon-
structing Notre Dame on a different machine with more memory capabilities and a similar
processor. Further, despite making large reconstructions possible on a single machine, one
can perform the reconstructions in parallel on multiple machines for additional speedup.

4.2 Qualitative evaluation
For qualitative evaluation, we visually analyze the clusters obtained with our algorithm on
the three datasets and compare them to the CMVS clustered sets. For our method we consider
three different overlap configurations Noverlap = 0,2,4.

Cluster configuration. We show the clustering on the Hall, Church and Notre Dame
dataset in Fig. 4, 5, 6 respectively. Generally, due to the definition of coherent clusters in
dominant sets, our clusters are more compact compared to CMVS. See, for example, in Fig. 6
the clustering for the Notre Dame dataset, where the camera configuration is completely
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(a) CMVS (b) Ours (Noverlap = 0)

(c) Ours (Noverlap = 2) (d) Ours (Noverlap = 4)

Figure 6: Camera clusters on the Notre Dame dataset. Overlapping cameras in gray.

unstructured. Our clusters are better separated in small groups with respect to the CMVS
configuration. This is beneficial when integrating the method with a selection algorithm:
every cluster has low influence on the others and thus selection can be run independently (in
parallel) on each cluster.

Overlaps. Overlapping cameras are drawn with bigger gray squares. From Fig. 4 (Hall)
and Fig. 5 (Church) we can highlight the effect of overlapping when the camera set is more
structured around the scene. Contrary to the overlaps defined by CMVS, our overlapping
cameras are always positioned precisely at the borders of every cluster, demonstrating the
effectiveness of our diverse overlapping approach. In Fig. 7 we show the reconstruction on
the five different clusters of the Hall set with and without overlaps: overlaps lead to point
clouds that are denser and more complete on the border of the clusters.

5 Conclusions

In this work we presented a method for organizing a set of viewpoints in overlapping clus-
ters in order to improve the scalability of MVS reconstructions. Our formulation directly
encodes limits on cluster size and cluster overlaps using the theory of dominant sets for clus-
tering. Our method leads to significant speedup factors (up to 6) for the dense multi-view
reconstruction with respect to considering all images at once, while maintaining high recon-
struction performances. When compared with another state-of-the-art clustering method [6],
we show our clusters to have a cleaner separation and better overlaps. The diverse overlaps
allow an easy integration with an image selection method which can be run for each cluster
independently and in parallel. Merging the view clustering and image selection is a natural
extension of this paper and will be part of future work.
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(a) Cluster 1 (b) Cluster 2 (c) Cluster 3 (d) Cluster 4 (e) Cluster 5

(f) Cluster 1 (g) Cluster 2 (h) Cluster 3 (i) Cluster 4 (j) Cluster 5

Figure 7: Reconstruction using different zero (top) and four overlapping cameras (bottom).
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