
Learning Smooth Pooling Regions for Visual Recognition

Mateusz Malinowski
mmalinow@mpi-inf.mpg.de

Mario Fritz
mfritz@mpi-inf.mpg.de

Scalable Learning and Perception
Max Planck Institute for Informatics
Saarbrücken, Germany

From the early HMAX model to Spatial Pyramid Matching [2, 4], spatial
pooling has played an important role in visual recognition pipelines. By
aggregating local statistics, it equips the recognition architectures with a
certain degree of robustness to translation and deformation yet preserving
spatial information. Despite of its predominance in current recognition
systems, we have seen little progress to fully adapt the pooling strategy to
the task at hand, and this critical decision is most prominently based on
hand-crafted layouts.

We propose in this paper a flexible parameterization that allows for
a richer set of possible pooling regions and show results on classifica-
tion tasks using two different pipelines [1, 3]. The higher-level pooling
representation is learned jointly with the classifier to support the recog-
nition task. In order to deal with the increased flexibility of the model,
we investigate different regularizers and efficient learning schemes. In
particular, we propose a smoothness regularizer that yields the strongest
performance improvements in our experiments.

The simplest form of the spatial pooling is computing histogram over
the whole image. This can be expressed as Σ(U) := ∑

M
j=1 u j, where

u j ∈ RK is an encoded patch extracted from the image (out of M such
codes) and an index j refers to the spatial location that the code originates
from1. Another popular pooling scheme that has been proven success-
ful [5] is max-pooling: M(U) := maxM

j=1 u j. Since the pooling approach
looses spatial information of the codes, Lazebnik et al. [2] proposed to
first divide the image into subregions, and afterwards to create pooled fea-
tures by concatenating histograms computed over each subregion. There
are two problems with such an approach: first, the division is largely ar-
bitrary and in particular independent of the data; second, discretization
artifacts occur as spatially nearby codes can belong to two different re-
gions as the ’hard’ division is made.

In our paper we address both problems by using a parameterized ver-
sion of the pooling operator

Θw(U) := ρ
M
j=1(w j ◦u j) (1)

where a ◦ b is the element-wise multiplication, and ρ ∈ {max,∑} is a
pooling function. Moreover, we have investigated a few regularization
terms on the pooling weights showing that smooth pooling regions are
crucial.

Consider a sampling scheme and an encoding method producing M
codes each K dimensional. Every coordinate of the code is an input layer
for the multilayer perceptron. Then we connect every j-th input unit at
the layer k to the l-th pooling unit ak

l via the relation wk
l ju

k
j . Since the

receptive field of the pooling unit ak
l consists of all codes at the layer

k, we have ak
l := ∑

M
j=1 wk

l ju
k
j or ak

l := maxM
j=1 wk

l ju
k
j . Next, we connect

all pooling units with the classifier allowing the information to circulate
between the pooling layers and the classifier (Fig. 1). The latter has an
access to the class membership and can use this information back to the
pooling stage to shape better pooling regions. For the training purpose we
have derived the backpropagation rules used for the weights’ update.

To make the whole approach more scalable towards bigger dictionar-
ies we introduce two approximations. The first one, called pre-pooling,
uses standard pooling scheme to aggregate the codes over small neigh-
bourhood before our joint training of the pooling regions together with the
classifier’s parameters is applied. The second approximation (batches) di-
vides a K dimensional code into K

D batches, each D dimensional. The lat-
ter enables embarrassingly parallel training of the model with sizable dic-
tionaries. Our implementation of the proposed method is publicly avail-
able at http://www.d2.mpi-inf.mpg.de/datasets.

We have evaluated our method on two classification datasets CIFAR-
10 and CIFAR-100 following Coates and Ng [1] pipeline, and UIUC
sports events following Li-Jia et al. [3].

1That is j = (x,y) where x and y refer to the spatial location of the center of the extracted
patch.

138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183

unit at the layer k to the l-th pooling neuron ak
l via the relation wk

lju
k
j . Since the

receptive field of the pooling neuron ak
l consists of all codes at the layer k, we have

ak
l :=

PM
j=1 wk

lju
k
j , and so in the vector notation

al =
MX

j=1

wl
j · uj = ⇥wl(U) (1)

Next, we connect all pooling neurons with the classifier allowing the information to
circulate between the pooling layers and the classifier.

Although our method is independent of the choice of a dictionary and an encoding
scheme, in this work the triangle coding was used [9]. That is, we first apply K-means
clustering in order to learn K centroids

�
ck
 K

k=1
from the extracted patches x, and next

we build a K dimensional code by employing the following formula
fk(x) := max {0, µ(z) � zk} (2)

where zk := ||x� ck||l2 and µ(z) is the mean of the elements of z. This encoding can
be seen as a ’softer’ version the 1-to-K hard assignment scheme which arises naturally
from the K-means clustering [9].

Similarly, potentially every multi-class classifier that can be interpreted in terms of an
artificial neural network can be connected to the pooling neurons, for the purpose of
this work the logistic regression was chosen. This classifier can readily be connected to
the pooling neurons via the formula

J(⇥) := � 1

D

DX

i=1

LX

j=1

1{y(i) = j} log p(y(i) = j|a(i,2);⇥) (3)

where D denotes the number of all images, L is the number of all classes, y(i) is a label
assigned to the i-th input image, and a(i,2) are responses from the ’stacked’ pooling
neurons [al]l for the i-th image. We used the logistic function to represent the proba-
bilities in Formula 3, that is

p(y = j|x;⇥) :=
exp(✓T

j x)
PL

l=1 exp(✓T
l x)

(4)

Since the classifier is connected to the pooling neurons, our task is to learn jointly the
pooling parameters W together with the classifier parameters ⇥.

Finally, we also need a learning procedure able to train jointly both the classifier and
the learnable pooling regions. Standard gradient descents algorithms updates the pa-
rameters using the following fixed point iteration

Xt+1 := Xt � �rE(Xt) (5)
where in our case X is a vector consisting of the pooling parameters W , the classifier
parameters ⇥ and E is the energy function given by Formula 3 coupled with Formula
1. In practice, however, we employed a quasi-Newton algorithm LBFGS1 which also
performs a one dimensional line-searching in order to find appropriate learning rate
�. In order to find the gradient rE(X) we adapted the standard backpropagation
algorithm [10, 11] which is a natural choice for methods that can be interpreted as
artificial neural networks.

1The algorithm, developed by Mark Schmidt, can be downloaded from the following web-
page: http://www.di.ens.fr/ mschmidt/Software/minFunc.html

4

Pooling units

...

ŷ

Dictionary

...

092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137

Dictionary

+

...

Parameterized Pooling Operator (PaPoOp)

+

+

+

+

ŷ

+

...

+

...

+

...

+

...

Figure 1: Overview of our approach and parameterized pooling operator. Learnt
weights realize different pooling strategies. 4 pooled feature per code coordinate al-
lows us to recover the well know spatial pyramid matching as a special case.

In this paper we address both problems by using a parameterized version of the pooling
operator, that is ⇥w(U) :=

PM
j=1 wj · uj , where a · b is the element-wise multi-

plication of two vectors a and b. Note that the standard spatial division of the image
into subregions can be recovered from this parameterized version of the pooling op-
erator by setting the vectors wj either to a vector of zeros 0, or a vector of ones 1.
For instance, features obtained from dividing the image into 2 subregions can be re-

covered from ⇥ by concatenating two vectors:
PM

2
j=1 1 · uj +

PM
j= M

2 +1 0 · uj , and
PM

2
j=1 0 · uj +

PM
j= M

2 +1 1 · uj .

More generally, let F := {⇥w}w be the family of the pooling functions parameterized
by the vector w, and let w⇤,l be the ’best’ parameter chosen from the family F based
on the initial configuration l, and the given set of imagesWe will show the learning
procedure that can select such vectors in the next subsection. Figure 3(a) shows four
initial configurations that mimic the standard 2-by-2 spatial image division. Every such
initial configuration can lead to different w⇤,l as it is shown in Figure 3(b). Clearly,
the family F contains all possible ’soft’ and ’hard’ spatial divisions of the image, and
therefore can be considered as theirs generalization.

2.2 Learnable pooling regions

The main idea of the proposed method is to learn jointly the pooling weights w and the
parameters of the classifier. Intuitively, the classifier has access to the classes that the
images belong to, and therefore can shape the pooling regions. On the other hand, the
method aggregates statistics of the codes over such learnt regions and pass them to the
classifier allowing to achieve higher accuracy. Such joint training of the classifier and
the pooling regions can be done by adapting the backpropagation algorithm, and so can
be interpreted as a neural network.

Consider a dictionary producing M codes, each K dimensional. Every coordinate of
the code is an input layer for the neural network. Then we connect every j-th input

3

Classifier

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

Learnable Pooling Regions for Image Classification

discuss two approximations of our method. First ap-
proximation introduces a pre-pooling step and there-
fore reduces the spatial dimension of the codes. The
second approximation divides the codes into a set of
smaller batches (subset of codes) that can be optimized
independently and therefore in parallel.

Finally, we evaluate our method on the CIFAR-10 and
show strong improvements in the regime of small dic-
tionaries where our more flexible model shows its ca-
pability to make best use of the representation by ex-
ploring spatial pooling strategies specific to every co-
ordinate of the code. Despite the diminishing return,
our performance improvements persist up to largest
codes we’ve investigated. We also show strong classi-
fication performance on the CIFAR-100 dataset where
our method outperforms, to the best of our knowledge,
the state-of-the-art on this dataset.

2. Method

As opposed to the methods that use fixed spatial pool-
ing regions in the object classification task (Lazebnik
et al., 2006; Yang et al., 2009) our method jointly op-
timizes both the classifier and the pooling regions. In
this way, the learning signal available in the classifier
can help shaping the pooling regions in order to arrive
at better pooled features. In turn better features, that
are fed into the classifier, are expected to reduce the
classification error further.

2.1. Parameterized pooling operator

The simplest form of the spatial pooling is computing
histogram over the whole image. This can be expressed
as ⌃(U) :=

PM
j=1 uj , where uj 2 RK is a code (out of

M such codes) and an index j refers to the spatial lo-
cation that the code originates from1. A code is an en-
coded patch extracted from the image. The proposed
method doesn’t make any explicit assumptions about
the method used to extract patches nor an encoding
scheme used to encode such patches. So the code can
be a sparse code or 1-of-K hard assignment or a trian-
gle code. Nonetheless, the last coding method is used
in this paper to validate the proposed method. Such
a simple pooling approach looses all spatial informa-
tion of the codes, and therefore Lazebnik et al. (2006)
proposed to first divide the image into subregions, and
afterwards to create pooled feature by concatenating
histograms computed over each subregion. There are
two problems with such an approach: firstly, the divi-
sion is largely arbitrary and in particular independent

1That is j = (x, y) where x and y refer to the spatial
location of the center of the extracted patch.

of the data; secondly, discretization artifacts can occur
as spatially nearby codes can belong to two di↵erent
regions because the ’hard’ division is made.

In this paper we address both problems by using a
parameterized version of the pooling operator

⇥w(U) :=

MX

j=1

wj � uj (1)

where a � b is the element-wise multiplication of two
vectors a and b. Note that the standard spatial divi-
sion of the image into subregions can be recovered from
this parameterized version of the pooling operator by
setting the vectors wj either to a vector of zeros 0, or a
vector of ones 1. For instance, features obtained from
dividing the image into 2 subregions, with a split at the
middle of the image, can be recovered from ⇥ by con-

catenating two vectors:
PM

2
j=1 1�uj +

PM
j= M

2 +1 0�uj ,

and
PM

2
j=1 0 � uj +

PM
j= M

2 +1 1 � uj , where
�
1, ..., M

2

and
�

M
2 + 1, ..., M

refer to the first and second half

of the image respectively.

More generally, let F := {⇥w}w be a family of the
pooling functions given by Eq. 1, parameterized by the
vector w, and let w⇤,l be the ’best’ parameter chosen
from the family F based on the initial configuration l
and a given set of images.2 First row of Figure 2 shows
four initial configurations that mimic the standard 2-
by-2 spatial image division. Every initial configuration
can lead to di↵erent w⇤,l as it is shown in Figure 2.
Clearly, the family F contains all possible ’soft’ and
’hard’ spatial divisions of the image, and therefore can
be considered as their generalization.

2.2. Learnable pooling regions

The main idea of the proposed method is to learn
jointly the pooling weights w together with the param-
eters of the classifier. Intuitively, the classifier during
training has access to the classes that the images be-
long to, and therefore can shape the pooling regions.
On the other hand, the method aggregates statistics
of the codes over such learnt regions and pass them
to the classifier allowing to achieve higher accuracy.
Such joint training of the classifier and the pooling re-
gions can be done by adapting the backpropagation
algorithm (Bishop, 1999; LeCun et al., 1998), and so
can be interpreted as a densely connected multilayer
perceptron (Collobert & Bengio, 2004; Bishop, 1999).

Consider a sampling scheme and an encoding method
producing M codes each K dimensional. Every coor-

2 We will show the learning procedure that can select
such parameter vectors in the following subsection.

words

Figure 1: Sketch of our architecture. We encode the patches extracted
from the images using popular encoding method. Next, we couple ev-
ery position of such encoded patches with the classifier via the pooling
weights. Our method learns both the pooling weights and classifier’s pa-
rameters at the same time by using the backpropagation rule.

Figures 2(a) and 2(b) show the classification accuracy of our model
against the baseline [1] on CIFAR-10. Our method outperforms the ap-
proach of Coates by 10% for dictionary size 16 (our method achieves the
accuracy 57.07%, whereas the baseline only 46.93%). For bigger dictio-
naries (1600) with an accuracy for the batched model of 79.6% we out-
perform the Coates baseline by 1.7%. On CIFAR-100 our model achieves
56.29% outperforming the baseline by 4.63%. Lastly, we investigate
events recognition on the UIUC Sports database based on object bank
features [3]. Our learnable pooling strategy achieves accuracy 79.4%,
about 3.1% higher then the hand-crafted scheme used in Li-Jia et al. [3].
Our experiments show the importance of the optimized pooling strategy.

0 50 100 150 200 250 300 350 400
35

40

45

50

55

60

65

70

75

80

Dictionary size

A
c
c
u
ra

c
y

Our

Coates

Random Pooling

Bag of Features

(a)

200 400 600 800 1000 1200 1400 1600
55

60

65

70

75

80

85

Dictionary size

A
c
c
u

ra
c
y

Our (redundant batches)

Our (batches)

Our

Coates

Random Pooling

Bag of Features

(b)

Figure 2: Figure 2(a) shows accuracy of the classification with respect to
the number of dictionary elements on smaller dictionaries. Figure 2(b)
shows the accuracy of the classification for bigger dictionaries when our
approximation is used (batches, and the redundant batches).

[1] A. Coates and A. Y. Ng. The importance of encoding versus training
with sparse coding and vector quantization. In ICML, 2011.

[2] S. Lazebnik, C. Schmid, and J. Ponce. Beyond bags of features: Spa-
tial pyramid matching for recognizing natural scene categories. In
CVPR, 2006.

[3] L. Li-Jia, S. Hao, E. P. Xing, and L. Fei-Fei. Object bank: A high-
level image representation for scene classification and semantic fea-
ture sparsification. In NIPS, 2010.

[4] M. Riesenhuber and T. Poggio. Hierarchical models of object recog-
nition in cortex. Nature Neuroscience, 2009.

[5] J. Yang, K. Yu, Y. Gong, and T. Huang. Linear spatial pyramid match-
ing using sparse coding for image classification. In CVPR, 2009.

