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We consider the problem of segmenting insulin granule cores and halos, from 3-
D transmission electron microscopy tomography data of beta cells. Due to the image
acquisition procedure, granule segmentation is especially challenging. Along with the
known difficulties in granule segmentation, such as image heterogeneity and complex
cellular structure, other problems are posed with 3-D beta cell imaging. The granule
membrane is partially or not at all visible; there is also poor contrast within the halos.
Being able to quantify large amounts of volumetric data, will allow biologists to have a
more accurate understanding of cellular mechanics than previously possible. We present
an algorithm for segmentation of granule cores, and then extend to halos. We first detect
cores using a localised region-based active contour on each 2-D slice, then perform a
refining segmentation using dual region-based active surfaces. Within the algorithm we
propose a novel active surface for granule halo segmentation. We also include a novel
gradient based term, to attenuate dual surface attractions around the membrane. We
demonstrate the effectiveness of our novel contribution, by comparing it to other state-
of-the-art active surface models and then compare our results to manual segmentations.
When compared to manual segmentations our approach produces a Dice’s coefficient of

Abstract

0.88 and 0.85 for core and halo segmentations respectively.

1 Introduction

Image informatics has become the rate-limiting factor in realising the full potential of dy-
namic cellular and molecular imaging studies [2(/]. Having large numbers of accurate quan-
titative data is integral to understanding cellular mechanisms. Insulin is the only hormone in
mammals able to lower blood glucose levels and consequently it is vital for life [10], [17/].
Typically, insulin granules are described as organelles containing a dense core, surrounded
by a halo and an enclosing membrane Fig. 1. Not all granules show a surrounding halo; this

(© 2013. The copyright of this document resides with its authors.
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Figure 1: Cropped 3-D TEM data set of beta cell, 401 x 401 x 36. The dark circles are the
granule cores C. Note the weak membrane information M presented in the image.

is very much dependent on the fixation procedure. Analysis of insulin granules in transmis-
sion electron microscopy (TEM) beta cell images is usually done manually. Currently, it is
not feasible to analyse large numbers of 3-D TEM beta cell images —as manual segmen-
tation is very time consuming. Recently, 3-D analysis was done on insulin granule images
extrapolating 2-D data [ /]. To get even more accurate data on insulin granule geometry and
volume, automated granule segmentation methods need to be developed.

1.1 3-D Electron Tomography Preparation

3-D electron microscopy tomograms of beta cells are obtained using a similar procedure
as for 2-D tomograms. Firstly, the sample has to be fixed using either a chemical or high
pressure freezing fixation method. Conventional 2-D images of the sample are then obtained
at different tilt orientations. The raw data is reconstructed into slices to form the 3-D image.
Despite viewing the same type of cell as [13] and [/], the 3-D beta cell images are quite
different from their 2-D versions. The primary cause for this is the need for a thicker sample
slice of the beta cell than in 2-D transmission electron microscopy but also the reconstruction
algorithm plays a part. We used the most commonly used weighted back projection in the
IMOD software package [! I]. This leads to an image with poor contrast when compared to
2-D beta cell electron microscopy tomograms. The relatively poor contrast has the greatest
effect on granule halos, which is demonstrated in Fig. 1.

1.2 Microscopy Image Segmentation Methods

Due to the complexity of beta cell transmission electron microscopy images, specific meth-
ods need to be developed in order to segment organelles of interest. In [Y], mitochondria
are segmented from serial block-face scanning electron microscopy images, using the ran-
dom forest classifier and the level set active contour. Within [%], cell nuclei are segmented
in 3-D confocal microscopy images, using an algorithm based on the watershed method.
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[1] tackled the problem of mitochondria segmentation in 3-D focused ion beam scanning
electron microscope images of brain cells, using an automated graph partitioning scheme.
Having a dedicated method for 3-D granule segmentation can provide large amounts of ac-
curate data —about insulin granules size and geometry— than previously possible. In recent
works, the level set active contour segmentation method has proven successful in segment-
ing microscopy images: [I3], [5], [F] and [4]. As a result of weak boundary information of
granules in TEM images, region-based active contours [3], [1], [15] and [1Y] have shown
to be successful in granule core segmentation. Due to the decreased image contrast in 3-D
TEM images, granule membranes are far less prominent (and in some cases unnoticeable)
than their 2-D counterparts. In this case a region-based active contour would be applicable
to solving this problem. Exploiting shape information can be beneficial when segmenting
complex objects. In [1X] segmented contours are implicitly represented by applying prin-
cipal component analysis on a collection of signed distance functions, representative of the
training data. [16] includes shape priors derived from training data, within a Bayesian level
set framework.

We present an algorithm for serial segmentation of granule cores and membranes, util-
ising region-based active contours. An initial segmentation is first performed on each slice
to get a good estimate of the granule core locations; a second refining segmentation is then
done on each granule using an active surface, first for the core then the halo. We propose
a novel boundary prior and gradient term, which we incorporate in a dual active surface,
to address the challenges faced with halo segmentation. The remainder of the paper is de-
scribed as follows: in Section 2 we describe our novel active contour, boundary prior and
gradient term. We present our granule segmentation algorithm in Section 3. In Section 4 we
validate our results by doing comparisons to manual segmentations and other state-of-the-art
methods. We conclude in Section 5.

2 Theoretical Preliminaries

Active contour models have proven successful in image segmentation [14], [$] and [/]. Geo-
metric active contours represent a contour as the zero level set of a signed distance function.
In particular, region-based active contours [$], [17] and [15] have been shown useful in mi-
croscopy image segmentation [h]. [15] proposed a generalised region-based scheme, similar
to that of [3] but incorporates region variances. It is presented in a Bayesian framework,
where region intensities are assumed to have a Gaussian distribution. 3-D TEM granules are
challenging to segment for many reasons: they are comprised of many complex structures,
they are also heterogeneous (between granules and within the image) and have weak mem-
brane information. In some cases, granule halos are characterised as just a fuzzy, high pixel
intensity band around the core. Alternatively, a halo may have similar intensities with the
image background; in this case the only distinguishing feature is the homogeneity within the
halo. This makes incorporating region variances advantageous in halo segmentation: a more
homogeneous region will have less intensity variance. Given an image / the conditional
probability for intensities within its respective region, i —inside and outside the contour—

is defined as:
1 B (1—p)*

201'2 1
(Varo) e ; ey

where o; and y;, represent the standard deviation and mean intensities within region i.

pi(l|C) = po (I C) =
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2.1 Boundary Prior

Presenting the level set active contour in a Bayesian framework provides an efficient way of
incorporating shape priors into the energy term. During halo segmentation, it is important
that the contour does not enter the core during its evolution. We present a level set boundary
prior, to ensure that the halo segmentation always encapsulates the granule core. Our bound-
ary prior has the advantage of not using training data but is instead based on the granule core
segmentation. Given the probability of a region being partitioned by a contour C as pc,,,, (C)
the following relationship can be formed:

pCcormi(C ‘ I) S8 pl(l | C)pccore (C) ° (2)

In our algorithm we take C.. as the granule core, (which will be obtained previous to this
step). We assume that all contours outside of the granule core are equally possible; therefore
we define our boundary prior, pc,,,, (C) to have the following probability distribution:

PCoore (C) =0- if inside Ccorea 3)
PCoore (C) = 1 — if outside Ceope.

Given a level set function ¢, we can define our boundary prior energy functional as follows:

Epoun = —log (1 —-H (/ (Ccore —H; ((b))ccore dx)) . 4)

Where H is the Heaviside function and H is a smoothed Heaviside function, with derivative
O¢ as shown in [4]. We can then define M, (¢) = H¢(¢) and M»(¢) = 1 — He(¢). In order to
minimize the energy Ep,,,, we take the negative logarithm of the distribution p¢,,,, (C), [1].

2.2 Dual Bayesian Active Contour

Despite the merits of incorporating image variances within a region-based active contour,
more needs to be done to achieve accurate segmentations. We utilise the image energy
functional presented in [19]:

=33 | (stor) ¢ (("Gii"’z))wadxw [iwetonax

+Eb0un+l/%(|v¢‘_l)2dx7 (5)

where the first term is the image energy presented in [15], the second is the length term for
smoothness [ 4], the third term is our novel boundary prior, and the final term is a signed
distance regulariser to encourage the level set function to keep signed distance properties
while it evolves [17]. v and A are constants, which are set empirically. To get an accurate
reading of the granule halo statistics, we need to exclude core pixels. The granule core
is surrounded by the halo, therefore its intensities will be included when calculating the
mean and variance within the contour. In order to account for this we determine the region
statistical parameters in the following way: given a granule core, C,,,., the mean and variance
are determined for each region as follows:

. [1 )(Ml( ( >@C(ur£ dx
‘ul(¢) - J(M,(‘P( )) cme)dx (6)
o2(9) = J(1i=1())* (M (8 (x)) SCoore)dx

! f( M;(¢(x))®Ccore)dx
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(a) (b (©) (d)
Figure 2: Effects of boundary prior term. Surface initialised within the core (top row).
Slices of the surface are shown at z = 10,20,30 and 40 in (a), (b), (c) and (d) respectively.
The surface is shown after 10 iterations (bottom row). Note that the surface no longer is
within the core.

To help prevent the contour from getting stuck in local minima during its evolution, we
utilise the dual active contour framework [ 1]. Using the dual active contour, ultimately leads
to a more accurate segmentation. The dual energy term is an internal energy, which means
it is not influenced by image information. This results in an uniform attraction between the
contours. This would be ideal if the granule membrane is always located in the centre of the
two contour initialisations, however this is not always the case. Some granule membranes
have an ellipsoid shape; also we do not know exactly how far away the membrane will be
from the core. In some cases, granules have a membrane which is slightly visible. We
introduce a gradient based term to help take advantage of this information and use it to slow
the evolution of a contour around the granule membrane. The following gradient term is
proposed,

1
(1 + IVGGS *I|4Ccoreadj)

GO'S * Ceore
max(GO'S * Ccare)

)

Ccoread = 1-

Where Gg, is a Gaussian smoothing kernel with standard deviation 0;. Cepreqq; is included
to help nullify any gradient information around the core. It should be noted that VG, *I is
calculated only using x and y gradient information as in the z dimension it does not provide
any significant information. Using the fourth power of the image gradient is a reflection
of the weak gradient information in the 3-D TEM images —we found that using this form
provides sufficient results nonetheless. Given two contours initialised outside and inside the
granule, with corresponding level set functions ¢ and y respectively, we present our dual
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(@) (b)
Figure 3: Core segmentation of section of image (a). Horizontal slice at z = 30 with core
overlaid in red (b).

energy functional as:

Eanat(0,9) = E(9) +E (y) + T / [He (0) + He ()] dx ®)

Ejuq can be minimised by the gradient descent method with respect to ¢ and y by solving
the following gradient flow equations:

2 _ 2 _ 2
‘f;f:ae(m(zog(@—(' ol Eop) >+v68<¢>dw(v"’)

1 O (<) V|
5 (¢)CLU}"€5 (f( core HE (d’))cﬁﬁr{f dx) 2 iv ¢
R e renemay (704 ()
—2788¢ (¢) [He(¢) — He (W), ©)

Iy _ o3\ (—wm)  (I-m) Vy

a—t—&(l[/) (l g( ?>_ 0121 + 6222 >+V5g(l[/)le(|vw|>
5 (‘/’) Ccar€6 (f( core HS(W))Ccore dx) iv Vl[/

" 1-H (f (Ceore — He (W) Ceore dx) A < vodi <V >)

—2786¢ (y) [He (W) — He ()] (10)

Where 99/3: and 9v/a: represent the Giteaux derivatives of E,, with respect to ¢ and v,
respectively. The order of the terms correspond to those in (5) and the final term is the dual
term. 7 is a weighting constant for the dual term and o7 > is the standard deviation and p; »
the mean, for the corresponding level set functions.

3 Segmentation Algorithm

Insulin granule segmentation begins with core segmentation, it then uses the results of the
core segmentation as a starting point for halo segmentation. We first do 2-D core segmenta-
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tion on each slice, to get an estimate of the core locations and shape. We utilise the region-
based active contour with shape regulariser in [14] to do the core segmentations. Due to the
decreased detail in the 3-D TEM images, during the detection stage, granules may be missed
in some slices. The advantage of doing the 2-D segmentation initially is that even if some
granules are missed in a slice, it is likely that they will be segmented in others. Also, if
there are false segmentations it is unlikely that they will persist through all slices. Due to the
spherical shape of granules, it is likely that cores will be segmented within the middle than
towards the ends. The roundness at the vertices is not captured by doing the 2-D segmen-
tation, also it does not produce a smoothly connected core. In order to correct for this and
encourage continuity, we extend 2-D dual region-based active contour in [ 1 3] to 3-D. Before
we do active surface segmentation pre-processing is done to remove incorrect segmentations
and connect disjoint cores. The result of this active surface is a smoother, more accurate,
core segmentation. We then use the core as a starting point for halo segmentation. We utilise
the dual active surface in (8). The core is used as the inner surface and a dilated version of
the core is used at the outer surface. Pseudo-code of the granule segmentation algorithm is
outlined in algorithm 1.

/* 2-D Segmentation x/;
Input: 3-D TEM Image (1)
forall the Slices do
‘ Perform 2-D segmentation using [15];
end
/* Pre-processing */;

forall the Connected components in I do

| Remove objects with a thickness less than 5;
end
/*connect along z axis*/;
forall the Objects in I do
if (Object centres overlap in 7 axis) & (Vertical distance<max(horizontal axis))

then
| Connect Objects;
end
end
orall the All granules do
/* 3-D Core Segmentation =*/;
Crop area around granule to 2 xXmax(axis);
adj = (max(Horizontal axis)-Vertical axis)x0.75;
Mourer = dilate(object, ones[5,5,adj+5]);
Minner = €rode(object, ones[5,5,adj-5]);
Ceore = 3-D Dual Region-Based Active Surface;
/* 3-D Halo Segmentation =*/;
Moyser = dilate(Ceore, 0nes[50,50,50]);
Minner = Ceore’
halo = Active Surface using (8);

by

end
Algorithm 1: Granule Segmentation Using Active Surfaces
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Figure 4: Core (a, b) and halo (c, d) segmentations done manually and using the proposed
method in first and second columns respectively.

Halo Core
Method Dual, [17] [15] Proposed Method (8) Proposed Method
Dice’s Coefficient 0.82 0.49 0.85 0.88

Table 1: Core and halo segmentation comparisons against manual segmentations.

4 Experimental Results and Analysis

The 3-D TEM image used is 1000 x 1000 x 53 pixels. For our novel active surface the follow-
ing parameters are used for all images v = 0.009 x 255%, A = 0.000003 x 2552, oy = 3.75,
€ =0.005, At =0.2 and 7 = 0.8160 x 255°. To maintain a steady evolution, our boundary
prior is normalised and then multiplied by 400, (which was determined empirically). This
is done because if the surface moves near the core, the surface is pushed out by a very large
force —from our boundary term. Although conceptually correct, this greatly deforms the
level set function (more than is necessary) leading to an unstable evolution. To demonstrate
that our boundary prior is still effective with this scaling, in Fig. 2 we evolve a surface solely
under the influence of our boundary term. The top row shows surface initialisations within
the core (in blue) and after ten iterations we can see that the surface has moved outside of the
core (top row). We perform core segmentation of a section of a 3-D TEM image to demon-
strate the accuracy of the active surface used for core segmentation in, Fig. 3. Fig. 3 (a)
shows the core segmentation —note the flat tops are at the image boundary— and Fig. 3 (b),
shows a horizontal slice at z = 30 with the core overlaid.

We show a completely encapsulated granule core and halo in Fig. 4. Fig. 4 (a and c) show
a manually segmented core and halo, respectively. Note that since the granule is segmented
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(a) (b © (d (e)
Figure 5: Halo segmentation comparisons: manual (first row), dual region-based active sur-
face [17] (second row), Rousson’s [15] (third row) and proposed method (8) (bottom row).

in each slice, this does not ensure smoothness in the vertical plane. The segmented core and
halo using our algorithm are shown in Fig. 4 (b and d), respectively. For the same granule
we compare our active surface for halo segmentation against other active surfaces in Fig. 5.
Results are shown at constant intervals, horizontal slices.

In Fig. 5 the results of halo segmentation are shown at slices 10, 20, 30 and 40 in the z
plane, (b), (c), (d) and (e) respectively. The contour initialisations are shown in (a) and are at
z = 25; the TEM image at that z = 25 is shown at the top of (a). The first row in Fig. 5 shows
the manually segmented results. In the second row, we show results using an active surface
version of [1”7] in a dual framework. The third row is the result of [15]. The fourth row is the
proposed active surface (8). All cases are initialised using our algorithm (with the exception
of the third row, which is not dual). Where possible similar parameters are kept constant.
We can see that our proposed active surface is able to achieve more accurate segmentations
around the membrane, despite low contrast within the halo and a weak membrane. We also
do a quantitative comparison of our method and the ones discussed previously, against the
manually segmented granule, in Table 1. We quantify our results using Dice’s coefficient. It
can be seen that the proposed active surface is able to achieve the most accurate segmentation
around the membrane.
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5 Conclusion

We present an automated segmentation algorithm for insulin granule cores and halos, in 3-
D TEM beta cell images. The algorithm proceeds though 2-D core segmentation for core
detections and then a more accurate core segmentation using a dual region-based active sur-
face. To perform halo segmentation we introduce a dual Bayesian active surface. To slow
contour attractions near the membrane, a gradient term is incorporated to take advantage
of possible gradient information. We also propose a novel boundary prior to prevent the
surface from moving into the core. We compare our novel active surface against other state-
of-the-art active surface models. Qualitatively our method shows more accurate results. We
also compare each method to a manually segmented granule using Dice’s coefficient. Our
method gives a coefficient of 0.88 and 0.85 for the core and halo respectively. Having a dedi-
cated algorithm for insulin granule segmentation in 3-D TEM beta cell images will eliminate
subjective bias and enable reproducibility. With this method researchers can acquire more
accurate volumetric insulin granule information than previously possible.
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