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Convex quadratic optimization is one of the most widely used concepts
in image segmentation. It facilitates a wide range of information sources,
such as edge, intensity, texture and shape. The problem is especially chal-
lenging for the multi-label case, even being NP-hard in its most general
setting. Therefore, fast "solutions", as the α-expansion of [1], are limited
to local optimality. Addressing this problem, several approaches relax the
labeling integrality condition, resulting in quadratic programs (QPs) like
in [2] and in [4], which can be solved in polynomial time.

Although this is efficient in a theoretical sense, large-scale QPs that
arise from typical multi-label tasks can rarely be used for image segmen-
tation directly due to either time or space constraints, or both. We address
this issue by an adaptive domain subdivision scheme, reducing the prob-
lem to a short sequence of spatially smoothed medium-scale QPs, which
subsequently better approximate the large-scale program. Our scheme is
globally optimal in terms of the approximated problem.

Putting our main focus on the subdivision, we restrict ourselves to
minimization of the popular but rather simple piecewise constant Mumford-
Shah functional. Therefore, we seek for a labeling that trades off the
length of the labeling border and the approximation of image intensity u
by known reference intensitites ui for each label i. For discrete domains
the associated energy can be written as
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with P being the set of domain elements and N being the set of neighbor-
hood relations. The binary variable x j

i indicates whether domain element
j mutually exclusively belongs to label i or not.

Circumventing the hardness of general convex quadratic labelings,
we remove the binarity constraint while keeping the rest of the problem
fixed. For any quadratic labeling energy the problem then transforms into
a [0,1]-relaxed binary QP (2 – 4) in x = (x1
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Here, the element-wise mutual label exclusiveness degrades to affinity,
i.e., ∀ j : ∑i x j

i = 1, which is reflected by Eq. (3). For the Mumford-Shah
example, matrix H and vector f subsume the neighborhood relations and
the intensity approximation terms of Eq. (1), respectively.

Clearly, the above problem is of large scale, because x contains p · l
variables, where p is the number of domain elements and l is the number
of labels. Treating this issue, we seek for an adaptive domain subdivision
that gradually becomes finer near borders of the (unknown) labeling. If
such a domain subdivision would be known beforehand then we could set
up l label variables for each of the r subdivision regions and arrange them
altogether into a vector z = (z1

1 z2
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l zr
l )

T. Furthermore, we could
set up a projector P which by

x = Pz (5)

superimposes the regional basis in z to the element basis in x according
to the subdivision. Inserting the superimposition (5) into the QP (2 – 4),
we would obtain a spatially smoothed approximation of the large-scale
program. The approximate QP in z would be of medium scale, because
r� p unless the mild assumption of spatial labeling coherence is violated.

Certainly, we do not know the subdivision beforehand,which is why
we have to (re-)construct it alongside the labeling. To attain this goal we
draw on a hierarchical domain subdivision via quadtree, octree and their
generalization to higher dimensions. The key idea is to create a short
sequence (0, 1, . . . , i, . . . , c) of superimpositions

x = Pi zi (6)

Figure 1: Comparison of our adaptive subdivision scheme to the large-
scale quadratic program on standard image data. First column: input im-
ages, second column: labeling of the large-scale quadratic program, third
column: labeling of our adaptive subdivision scheme for c = 5

that stem from subsequent adaptive subdivision refinement steps. More
precisely, we initially decompose the domain up to a preset tree level c
above ground, i.e., above the 0-level where regions equal domain ele-
ments. We then alternate c+1 times between two steps. In the first step,
we set up and solve the current approximate QP

zT
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based on the tree leaves known so far. Its solution is then transformed
from regional to element basis via Eq. (6) and "thresholded" to a hard
labeling, i.e., taking the most certain label for each element. In the sec-
ond step, leaves of the tree are subdivided if they touch a border of the
hard labeling. The refined subdivision tree is then passed into the next
alternation.

As the alternation elapses, the number of regions ri increases, improv-
ing on the problem approximation. Due to the adaptivity of the subdivi-
sion, we keep the medium-scale property, i.e., ri� p for each QP (7 – 9)
of the sequence. Keeping space requirements at its lowest, we can as-
semble PT

i HPi, fTPi and APi directly without ever constructing the large-
scale quantities H, f and A explicitly.

We drew an experimental comparison of our scheme to the large-scale
QP based on minimization of the Mumford-Shah functional (1). We used
synthetic image data with strong noise as well as standard images from the
Berkeley Segmentation Dataset [3], some examples of which are given in
Figure 1. Experiments show high quality labelings widely independent
of the initial tree level. Our scheme even introduces additional regular-
ization, preventing the emergence of spurious segments. Depending on
the complexity of the multi-label problem, our scheme outperformed the
large-scale program by, at least, factors between two and seven. The gain
in performance even allowed for near-interactive multi-label segmenta-
tion in our experiments on medium-sized problems.
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