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Abstract

Generating accurate 3D models for man-made environments can be a challenging
task due to the presence of texture-less objects or wiry structures. Since traditional
point-based 3D reconstruction approaches may fail to integrate these structures into the
resulting point cloud, a different feature representation is necessary. We present a novel
approach which uses point features for camera estimation and additional line segments
for 3D reconstruction. To avoid appearance-based line matching, we use purely geo-
metric constraints for hypothesis generation and verification. Therefore, the proposed
method is able to reconstruct both wiry structures as well as solid objects. The algorithm
is designed to generate incremental results using online Structure-from-Motion and line-
based 3D modelling in parallel. We show that the proposed method outperforms previous
descriptor-less line matching approaches in terms of run-time while delivering accurate
results.

1 Introduction

Generating accurate 3D models of man-made objects and urban scenery from an image se-
quence is a challenging task. Traditional Structure-from-Motion (SfM) approaches may fail
because of the high amount of untextured objects and wiry structures present. These objects
are usually poorly represented in the resulting point clouds, which are obtained by matching
local point features across multiple views using local descriptors, such as the Scale-Invariant
Feature Transform (SIFT) [10]. The main problems are the low descriptor discriminability
of visually similar points, and the changing surroundings for feature points located on wiry
structures. Therefore, a different kind of image feature is necessary. Since most man-made
objects can be approximated by line segments, line-based 3D reconstruction techniques can
be used as an alternative. While common approaches usually deliver accurate results for a
wide range of urban scenery, they cannot be directly applied to wiry structures. This is be-
cause of explicit 2D line segment matching, which is usually necessary to estimate 3D line
segments. To match two line segments from different views, an appearance-based similar-
ity measure has to be applied (e.g. normalized-cross-correlation) or line descriptors such as
MSLD [15, 16] or LEHF [4] have to be used. Since the resulting matching scores are based
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2 HOFER ET AL.: INCREMENTAL LINE-BASED 3D RECONSTRUCTION

Figure 1: The incremental 3D line modelling procedure is illustrated for the Sign sequence.
The images show the result after 15, and the full 48 images, together with the sparse 3D
point cloud. As we can see, the density of the reconstruction improves significantly when
more images are available. The reconstruction including SfM took 6 minutes.

on the surroundings of a line segment rather than the line segment itself, explicit match-
ing would fail for wiry structures due to the changing background, as well as for repeated
structures due to the low discriminability between similar segments.

To overcome such limitations, methods which do not rely on appearance-based line seg-
ment matching can be applied [5, 8]. Those algorithms, which assume known cameras, are
usually based on generating a large set of possible 3D line segment hypotheses, gradient
based scoring, and spatial clustering. For this purpose the scale of the reconstruction has to
be known, which can be difficult to estimate unless markers or GPS information are avail-
able. Moreover, hypotheses generation and grouping are very time consuming steps, which
have to be computed offline after all cameras are available and oriented correctly.

We propose a novel line-based 3D modelling approach, which extends the principles
presented in [5, 8] by incremental hypotheses clustering and geometric verification steps,
without the need of time consuming scoring in the image space. Furthermore, we show how
the spatial grouping radius can be derived from a distance threshold in the image space, to
achieve scale invariance. We demonstrate how fusing this approach with an incremental
point-based SfM [6] leads to an online 3D reconstruction method, which is able to cover
wiry- and repeated structures, as well as solid objects. Figure 1 illustrates the incremen-
tal reconstruction process. Evaluation showed that this approach outperforms previous ap-
proaches in terms of performance, while still delivering accurate 3D models.

2 Related Work

Over the years many line-based 3D reconstruction approaches have been presented. As
stated above, most of them are based on matching 2D line segments over multiple images
using some appearance-based similarity measure. Additionally, geometric constraints can be
used to verify sets of matched line segments [11, 14] along with the information provided by
the intersection context [7]. Even though these methods deliver accurate results for various
scenarios, they cannot handle wiry objects such as power pylons, street lights, or traffic signs.
In order to reconstruct these structures as well, we need to apply an approach without the
usage of similarity based line segment matching.

In the approach by Jain et al. [8] a line-based 3D model is generated using an image
sequence with known cameras, without any kind of explicit line matching. Therefore, the
depths of the endpoints of detected line segments in image space are seen as random vari-
ables. In order to estimate probabilities for certain depth values, they use backprojection of
the resulting 3D line hypotheses, and gradient based scoring in multiple views. By exploit-
ing global connectivity constraints and spatial clustering they estimate the final locations of


Citation
Citation
{Hofer, Wendel, and Bischof} 2013

Citation
Citation
{Jain, Kurz, Thormaehlen, and Seidel} 2010

Citation
Citation
{Hofer, Wendel, and Bischof} 2013

Citation
Citation
{Jain, Kurz, Thormaehlen, and Seidel} 2010

Citation
Citation
{Hoppe, Klopschitz, Rumpler, Wendel, Kluckner, Bischof, and Reitmayr} 2012

Citation
Citation
{Schindler, Krishnamurthy, and Dellaert} 2006

Citation
Citation
{Zhang and Koch} 2012

Citation
Citation
{Hyunwoo and Sukhan} 2010

Citation
Citation
{Jain, Kurz, Thormaehlen, and Seidel} 2010


HOFER ET AL.: INCREMENTAL LINE-BASED 3D RECONSTRUCTION 3

the 3D line segments, and remove outliers for which no valid cluster can be formed. There-
fore, information about the scale of the reconstruction is necessary to define an appropriate
clustering radius. Their evaluations showed accurate results for various scenarios. Unfortu-
nately, the algorithm is slow due to the extensive evaluation of all possible depth values in a
certain sweeping range. Hofer ef al. [5] proposed a modified version where the possible 3D
endpoint locations are limited to a certain range. This is achieved by intersecting the epipo-
lar lines of the line segment endpoints in neighboring views with overlapping line segments.
Assuming that the same line segment is visible in multiple views, there is a high probability
that the correct match is among these hypothetical correspondences. The authors showed
that these modifications lead to a massive performance increase while still delivering accu-
rate results. Nevertheless, the reconstruction procedure is still comparably slow and assumes
that the cameras as well as the reconstruction scale are known beforehand. Therefore, both
methods are not directly adaptable to perform SfM in an online manner.

Existing real-time SfM approaches involving line segments are usually related to Simul-
taneous Localization and Mapping (SLAM) [1]. SLAM approaches are designed to perform
pose estimation and sparse 3D reconstruction simultaneously in previously unknown envi-
ronments. While traditional SLAM methods are based on interest point features, it has been
shown that incorporating line segments produces more accurate results for urban environ-
ments [3, 4, 9]. Even though these approaches are in a way related to the proposed method,
they focus more on fast localisation than on generating accurate and complete 3D line mod-
els of the scene. Additionally, most of these algorithms require explicit line matching and
are therefore not out-of-the-box usable for wiry structures.

In Section 3 we will explain our proposed incremental line-based 3D reconstruction
method, and how we integrate it into an existing online SfM approach [6], for on-the-fly
reconstruction of man-made scenes. In Section 4 we evaluate the accuracy of our approach
using a synthetic dataset, and present additional real-world examples. We will demonstrate
that our method outperforms [5, 8] in terms of performance, without lowering the accuracy
of the results.

3 Incremental Line-based 3D Reconstruction

We want to achieve two things: First, we want to be able to perform on-the-fly 3D recon-
struction using line segments. Second, we want to be able to handle different types of urban
scenery, including wiry structures and texture-less objects. For the first requirement, we have
to use incremental SfM principles, where each new image is integrated into an initial recon-
struction based on at least two views, using absolute pose estimation. While pose estimation
could be done using line segments alone (e.g. [2]), this would require line segments to be
matched before camera information is available, using appearance-features. This contra-
dicts with the second requirement, because we cannot rely on accurate similarity based line
matching when wiry structures are involved. To fullfill both requirements, we fuse point-
based online SfM [6] for camera estimation, and an incremental descriptor-less line-based
3D reconstruction approach for refinement.

For pose estimation we directly apply the algorithm by Hoppe et al. [6]. Their approach
is divided into an alignment part, where new cameras are incrementally integrated into an
existing reconstruction, and a structure expansion part, where the 3D point cloud is densified
using SIFT [10] feature matches. When a new view is correctly aligned with the existing
geometry, bundle adjustment [12] is performed in order to maintain global consistency. The
algorithm provides incremental camera poses along with 3D world points and the corre-
sponding visibility information.
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For every new pose, we perform incremental line-based 3D reconstruction. After line
segment detection using the LSD algorithm [13], we integrate the new image into the exist-
ing reconstruction. To avoid appearance-based line matching, we compute a potentially large
set of possible matches among all previously processed similar views using weak epipolar
constraints, for each newly detected line segment. Since we perform online SfM, we often
cannot decide right away which potential match is the best, due to the lack of redundancy
in a certain part of the scene. Therefore, we keep all possible matches for each line seg-
ment and perform hypotheses merging during the matching procedure, by applying purely
geometric constraints. This allows us to easily adapt our 3D model when new information
is available, or when parameters have been changed during runtime. To decide whether two
hypotheses should be merged or not, we use spatial clustering in world- and image space.
While [5, 8] assume a certain constant grouping radius in world space, which means that the
reconstruction scale has to be known beforehand, we achieve scale invariance by deriving a
dynamic spatial grouping radius from the image space. This allows us to reconstruct a wide
range of man-made scenery, without the need of using markers or GPS information for scale
estimation. To achieve close to real-time performance, we avoid time consuming scoring in
the image space by using cluster size and visibility information to compute the inlier set after
each new image. Since the number of potential hypotheses could be very large, unpromising
hypotheses have to be removed periodically. In the following sections we give a detailed
overview over all the relevant computing steps involved.

3.1 Initial Hypotheses Generation

To perform incremental SfM we need to have an initial geometry involving at least two
views. Therefore, given two images /1 and I, and their respective sets of 2D line segments
L and L,, we create an initial set of 3D line segment hypotheses H by computing all possible
line segment matches between the two images.

To limit the number of potential matches, we exploit epipolar constraints using the corre-
sponding cameras C; and C; (estimated using [6]). For each line segment / € L; we compute
the epipolar lines p; and g; for the two endpoints, in image /. Each line segment [ € L; is
then extended to a full line and intersected with the epipolar lines to obtain two intersection
points x, and x,. We consider a line segment [tobea potential match for [ if it fulfills
both of the following constraints: For at least one of the endpoints of the line segment /, the
distance to the nearest intersection point has to be smaller than u (endpoint similarity con-
straint). The second endpoint of [ has to be closer to the other intersection point (orientation
constraint). For an illustration of the matching procedure see Figure 2.

The parameter p = 0.1 - min(||x, —x,||,||{||) represents a 10% tolerance threshold with
respect to the length of [ and the distance between the intersection points. The endpoint
similarity constraint states that even under occlusions, corresponding line segments need at
least one similar endpoint with respect to the epipolar geometry. Allowing a certain tolerance
is necessary in order to compensate imperfect pose estimation or variance in the line segment
detection step. The orientation constraint states that if there is one corresponding pair of end-
and intersection point, the line segment has to overlap the region between the epipolar lines
as much as possible. This constraint is weaker than the first one, but ensures that we have a
limited set of potential matches.

For each putative match {/ ,f} we compute a 3D line segment K, ; by triangulating the
corresponding 2D line segments from /; and ;. Each match results in a new hypothesis
h € H, which consists of an estimated 3D line segment K}, the camera set C(h) = {C;,Ca },
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Figure 2: (a) One example line segment / in image I'. (b) The green line segment is a
potential match for / in image I/, according to the matching constraints. (c) The line segment
shown in red is not a potential match for /, because the first constraint is violated.

and a corresponding 2D line set L(h) = {l,f}, and a set of triangulated 3D line segments
K(h) = {K, ;}. For a new hypothesis, Kj, = K, ;. Additionally, each hypothesis has a score
s(h) and a corresponding camera C* (/) defined as

%
. Kh a s
s(h) =1—min , , C*(h)=argmax(s(h)), C,eC(h 1
(h) {‘<”?h m>|} (h) gc,- (s(h)), CieC(h) (1)
= . S

where K}, is the directional vector of K}, and a denotes the camera ray of camera C;, and (-, -)
is the inner product. This means that the score is high for hypotheses with a corresponding
camera where the camera ray and the 3D line vector have an angle close to 90°. This prevents
that hypotheses which are estimated in a way that the 3D line segment points in the same
direction as the camera ray are defined as valid. Such hypotheses appear very small in the
corresponding images and are therefore prone to become degenerate by false matches.

3.2 Dynamic Grouping Radius Estimation

So far, we have shown how new hypotheses can be generated from 2D line segment matches
between two views. To perform incremental hypothesis merging for further incoming im-
ages, we need to define a spatial grouping radius ryp,c.. This parameter defines how close in
space two hypotheses need to be for merging. Unlike [5, 8] we do not want to define a con-
stant radius beforehand, because we usually do not know the scale of our reconstruction. To
be scale invariant we derive 7gpqc. from the image space dynamically. Therefore, we define a
maximum uncertainty ¢ in the image space, which denotes a tolerance threshold for possibly
imprecise line segment detection and camera estimation. This means that two similar line
segments should be merged if the distance between them is smaller than ©.

To bring this value to 3D space, we first compute a specific grouping radius rypgce ()
for each hypothesis & € H. Therefore, we project the 3D line segment Kj, back into the two
images which created this hypothesis. We then shift the resulting 2D line segments k; and
k> in the same orthogonal direction by o, and obtain ki and k». Afterwards, we compute
the epipolar lines for the endpoints of k| and intersect them with the line defined by k».
We triangulate the corresponding end- and intersection points, and obtain a shifted 3D line
segment Ifh. The radius rgpqace (1) is defined as the maximum distance between the endpoints
of K}, and the infinite line passing through Kj,.

To be robust against imprecise triangulation, we compute a characteristic grouping radius
Tspace(Ci) for each view. For this purpose we use the median of all values rpac. (), for which
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the hypothesis i references the view i. For the initial image set, both views have the same
grouping radius, because all existing hypothesis have to reference both of them. During the
incremental reconstruction procedure, each hypothesis /4 stores its radius, but uses the value
Fspace(C*(h)) associated with its characteristic camera, for the merging step. This allows
us to adapt the system to severe viewpoint changes, when the target object might appear
much larger or much smaller than before. We will show that this procedure leads to accurate
results, without the need of parameter tuning.

3.3 Incremental Update

When a new image I; is available we integrate it into our existing reconstruction, based on
the current set of previously computed images S = {I},...,J;_1 }. Since the number of im-
ages which are already integrated in our geometry could be very large, we have to determine
which of them are visually similar to the new image. Hence we have to define a set N(I;) of
neighboring views for /;, which consists of all views /; where the angle between the camera

rays Z(a,a) < a, and there is at least one 3D world point (obtained by the sparse SfM)
which is visible in both images. The angle threshold « is set to 45° for all our experiments.
We found that even if larger angles would result in a better triangulation quality, we often
cannot find appropriate matches using a larger angle threshold, due to line-segment dissim-
ilarities under severe viewpoint changes. Since |N(I;)| could be very large, we usually only
use the M nearest neighbors, based on the angle difference. This limitation does not alter the
results significantly, while the runtime per image gets approximately constant. The default
value for M is 10 (see Section 4 for an evaluation). Once we have determined N(I;), we
update our hypotheses set H using the new information available.

As above, we compute all possible matches for each line segment [ € L;, with the images
in N(I;). Unlike before, we do not want to create a new hypothesis for each match, because
some of these matches might correspond to an already existing hypothesis. Therefore, for
each possible correspondence {/ ,l} we try to add / to an existing hypothesis, which refer-
ences [. We create a triangulated 3D line segment K; ; and compute the spatial distances to
all candidate hypotheses. If we find a hypothesis & for which the spatial distance is below
Fspace(C*(h)), we perform an additional verification step before / is added to h. We project
the triangulated segment X ; into all referenced views in C(h), and compute the distance to
the corresponding line segments. If it is below o for all segments, we consider / to be a part
of h.

To update the hypothesis &, we add C; to C(h), [ to L(h), and K, ; to K(h). We also
re-compute the score s(h) and update the corresponding view C*(h). The estimated 3D line
segment K, has to be adapted as well, incorporating the newly triangulated line segment.
Therefore, we estimate the singular value decomposition of the scatter matrix containing
all endpoints of all line segments in K(4). The new line direction d is then defined as the
eigenvector corresponding to the maximum eigenvalue. We compute the center of gravity
G of all endpoints, and define a 3D line using G and the direction d. Finally, we project all
supporting 3D line segments onto the line defined by G and d, and set K}, to be the part of the
newly computed line which is overlapped by more than half of the projected segments. This
ensures that the characteristic segment will be estimated correctly, even if some degenerated
line segments have been matched to this hypothesis.

For each possible match {/ ,l}, for which we cannot find an existing hypothesis to be
added to, we create a new hypothesis in the same way as during initialization (see Section
3.1). After all possible matches for every line segment in L; have been evaluated, we have to
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re-estimate the characteristic grouping radius for each view, if new hypotheses have emerged
during the matching procedure (see Section 3.2). This can be done very efficiently, since we
do not recompute the characteristic grouping radius for existing hypotheses.

3.4 Hypothesis Verification and Outlier Removal

After all line segments have been matched, we compute the current inlier set. Therefore, we
sort the hypotheses & € H descending by the number of supporting line segments (= |L(h)]).
If two hypotheses have the same number of line segments, we order them according to their
reprojection error. To compute the current inlier set, we define three possible states for a
hypothesis: active (inlier), neutral (new hypothesis), or inactive (outlier).

We compute the current inlier set by iterating over the sorted hypotheses set. If a hy-
pothesis £ is active it is already an inlier from previous evaluation. If it is neutral, we have
to make the decision whether it is an inlier or an outlier. For % to be an inlier the following
criteria have to be fulfilled: the number of supporting line segments has to be at least A, and
the score s(h) has to be higher than 0.5. If this holds, the hypothesis is set to active and all
other hypotheses related to any of the segments referenced by h, are set to inactive. This
ensures that each 2D line segment can only contribute to one 3D line segment in the inlier
set. If the validity criteria are not satisfied, the hypothesis is set to inactive and considered an
outlier. All inactive hypotheses are skipped during the iteration. After processing, all active
hypotheses form the current result and can be visualized. The default value for A is 4 (see
Section 4 for an evaluation).

Compared to [5, 8] we do not need to compute a gradient based score in the image space
to validate our hypotheses, which is a very time consuming task. Our method is purely based
on geometric constraints and validation through clustering. Furthermore, the incremental
grouping procedure prevents evaluation of a very large set of hypotheses at the end of the
algorithm. However, using our proposed method might as well produce a huge hypotheses
set for large image sequences, which would ultimately lead to a performance breakdown.
Hence, we need to remove unpromising hypotheses from time to time. To achieve this, we
evaluate the number of supporting line segments in a hypothesis & compared to the number
of views, which have been matched with score maximizing view C*(h). If there are less
than A line segments that agree on 4, and C* (k) has been matched with at least 2- A views,
then hypothesis % is permanently removed from the hypothesis set. This ensures that the
number of hypotheses remains approximately constant, with respect to the actual number of
line segments in the scene. To ensure that inactive hypotheses have the possibility to become
valid again, we reset all inactive hypotheses to neutral when a new image is being processed.

One thing that has to be additionally considered is bundle adjustment [12]. In order
to maintain a global consistency in the reconstruction, this is particularly important for loop
closing when an object is surrounded by the camera. Since bundle adjustment might severely
change the camera parameters during the reconstruction process, we have to adapt our esti-
mated hypotheses accordingly. For this purpose we re-estimate and re-validate all existing
hypotheses after the periodically performed bundle procedure.

4 Evaluation

To evaluate the accuracy of the proposed method, we use the TimberFrame' sequence from
[8]. For this synthetic sequence a ground truth CAD model is available. Even though a
natural scene would be a much better demonstration of the capabilities of the algorithm, it is

Thttp://www.mpi-inf.mpg.de/resources/LineReconstruction/
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Figure 3: (a) An example image from the TimberFrame sequence by [8] (240 images total).
(b) Reconstruction by [8] (runtime of several hours mentioned). (c) Reconstruction by [5]
(45 minutes without SfM). (d) Our reconstruction (12 minutes including StM, M = 10, A =
4). The results are colored to illustrate the error compared to the ground truth CAD model
(values cropped from 0.0 to 1.0).

very hard to find or produce correctly labelled datasets. Usually there are simply too many
line segments in a real world scene, and whether some structure should be defined as a line
segment or not can be ambiguous even for the human eye.

Figure 3 illustrates our result for the TimberFrame sequence compared to [5, 8]. To
evaluate the accuracy of the reconstruction methods, we estimated the Hausdorff distance
between densely sampled points along the line segments and the ground truth CAD model,
and computed the mean and root mean square (RMS) error. All three methods deliver accu-
rate results with little variation in the error metrics. The highest accuracy is achieved by [5]
(RMS = 0.094,mean = 0.051), followed by our method (RMS = 0.196,mean = 0.065), and
[8] (RMS = 0.291,mean = 0.162). While the quality of the results is comparable among all
three approaches, our online approach is significantly faster. We manage to obtain the result
in 12 minutes, which is more than three times as fast as [5], even though we also perform
camera estimation and they assume the cameras to be known. We do not know the exact
runtime of [8], but the authors report several hours in their paper.

Figure 4 shows results for a wiry structure, using the Pylon sequence by [5]. As we
can see, our approach has even less outliers due to the improved scoring approach and the
automatic grouping radius selection. The performance increase is even more significant for
this testcase.

All experiments in this paper have been performed on a desktop PC equipped with an
Intel Core i5, 4 x 3.4 GHz CPU and an nVidia geForce GTX560 graphics card, used for
SIFT feature extraction. In order to increase the performance, all images are scaled down
from 10 megapixel to FullHD resolution for 2D line segment detection and incremental
reconstruction (but not for pose estimation and SIFT feature extraction). Evaluation showed
that this decreases the runtime of line segment detection from approximately 5 seconds per
image to less than 1 second, while still delivering almost the same results. Since we only
consider line segments with a minimum length of 1% of the image diagonal, the number of
detected segments remains approximately constant.

We have introduced a number of parameters in Section 3. While the majority of them
remains unchanged for all scenarios, the uncertainty ¢ may have to be adapted since it de-
pends on the size of the target object in the image. Even though this seems to be hard to
predict, extensive evaluation showed that setting ¢ to 1 pixel (for FullHD images) leads to
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Figure 4: (a) An example image from the Pylon sequence by [5] (106 images). (b) Recon-
struction obtained by [5] (67 minutes, lines only). (c) Our reconstruction, M = 10, A =4 (9
minutes, including SfM).

accurate results for the general case. For some sequences it might be beneficial to increase
the number of nearest neighbors M as well. Since we always use the M nearest visual neigh-
bors with the smallest view angle difference, it might occur that we get poorly triangulated
hypotheses if all neighboring views have similar camera rays. If few images of the scene are
available, the minimum number of hypothesis participants A could be decreased to densify
the result. Accordingly, if we have a large set of images A could be increased to improve out-
lier robustness. Figure 5 illustrates the effect of parameter alteration for the Pylon sequence.
As we can see, increasing M leads to improved results at the expense of performance, while
decreasing A introduces outliers.

5 Conclusion

We have presented a novel approach to perform on-the-fly line-based 3D reconstruction. We
have shown that it is possible to extend time consuming offline algorithms to work online,
without sacrificing the accuracy of the results. Our algorithm is able to handle a wide range
of man-made scenery, even wiry structures are correctly reconstructed. Additionally, being
able to choose a grouping radius in image space rather than in world space (with probably
unknown scale) eliminates excessive parameter tuning, and allows to create fast results.

While the performance is massively increased compared to offline algorithms, the ap-
proach is not yet real-time capable. The bottleneck is the matching procedure, since for each
line segment a large number of possible matches have to be evaluated depending on the ob-
jects in the scene. To further improve the performance, we plan to incorporate additional
matching criteria and to evaluate possible matches in parallel using the GPU.
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@ M=51=3() by M=51=5() () M=o, A =3(10) d) M=w,A=5(11)

Figure 5: Example results using modified parameters M and A. As we can see, alteration
of M changes the density of the result and has a high influence on the runtime, since larger
values generally mean more possible matches. Decreasing A also increases the density but
simultaneously introduces a large number of outliers, while increasing A leads to a much
sparser reconstruction. The numbers in brackets are the runtimes in minutes.
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