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Shape matching is a pervasive problem in computer vision. It concerns,
in its general form, the problem of determining a map f : X → Y among
two given shapes X and Y in such a way that their geometrical properties
are preserved by the transformation. Arguably one of the most adopted
formulations for shape matching takes form as a NP-hard quadratic as-
signment problem (QAP), where a quadratic term in the objective func-
tion encodes a measure of pairwise association among a set C ⊆ X×Y of
putative matches. In particular, let x ∈ [0,1]|C| be a (soft) indicator vector
representing a set of point-to-point matches among the two shapes, and
let S ∈R|C|×|C| be a similarity matrix among pairs of matches. Then the
matching problem can be cast as the quadratic program

max
x

xTSx s.t. Π(x)� c , (1)

where � denotes element-wise inequality, c ∈R|C| is a fixed vector, and
Π is a (possibly nonlinear) function specifying the mapping constraints
on the correspondence (e.g., one-to-one, one-to-many).

Several attempts at finding good local optima for variants of the QAP
have been proposed in computer vision literature. A well-known approach
consists in solving a modified problem in which ‖x‖2

2 = 1 replaces the
mapping constraints appearing in (1). The method manifests a tendency
to assign matches to each point, therefore bringing incorrect correspon-
dences in the final solution even in presence of moderate noise. The more
recent techniques based on game theory [1] replace this unit norm con-
straint by the L1 counterpart ‖x‖1 = 1, promoting stable, yet very sparse
solutions. In order to strike a balance between the two, and therefore cap-
ture a broader family of matching scenarios, in this paper we first propose
to consider the following family of relaxations for the QAP:

maxx xTSx (2)

s.t. (1−α)‖x‖1 +α‖x‖2
2 = 1 , x� 0 , α ∈ [0,1] .

The convex combination of L1 and L2 penalties appearing above takes the
name of elastic net [4]. This particular formulation gives rise to the so
called grouping effect, i.e., the joint selection of entire clusters of highly
similar matches. This is a desirable feature in most relaxed QAP scenar-
ios, in which one typically seeks only high-precision correspondences in a
situation where there is huge ambiguity in the candidate set. A local opti-
mum to problem (2) can be determined by following a projected gradient
approach. The optimization process is governed by the equations

x(t+1) = Pα

(
x(t)+δSx(t)

)
, (3)

where Pα is a projection operator taking a solution back to the feasible set.
Projected gradient is a natural choice for this family of problems, never-
theless its application in real-world settings is often rendered prohibitive
by the large scale of the data.

The major contribution of this paper derives from the observation that,
in most non-convex matching scenarios, the intermediate sequence of so-
lutions generated by the optimization algorithm has a tendency to exhibit
a certain degree of smoothness. This suggests the possibility to infer the
general direction of convergence from previous iterates. To this end, we
look at a family of techniques coming under the umbrella term of vector
extrapolation [3]. These techniques have found application in the context
of fixed-point iterative methods for solving linear and nonlinear systems
of equations; until now, limited attempts have been made to adopt such
methods in computer vision problems [2].

Consider the vector sequence x(0),x(1),x(2), . . . as generated by the
non-linear process of Eq. (3). It is often the case that the iterative process

Figure 1: Solutions obtained via vector-extrapolated projected gradient
in a problem of non-rigid matching under elastic net constraints. A very
selective correspondence is given by α = 0.1 (left); a denser, but similarly
accurate solution can be obtained with α = 0.85 (right).

requires many iterations to reach good accuracy, or that the individual
terms x(t) themselves are expensive to compute due to the action of Pα .
We are thus looking for a means to give an estimate of the limit point
s = limt→∞ x(t) using as few terms as possible. As we show in the paper,
such an estimate can be expressed as the linear combination

s∗ =
k

∑
i=0

γixi , (4)

with ∑
k
i=0 γi = 1. In other words, an approximation to the limit point can

be given as a linear combination of k+1 past non-linearly generated iter-
ates. In practice, solving for the optimal set of weights γi simply amounts
to minimizing a least-squares problem subject to linear constraints.

In order to assess the validity of the method, we performed a wide
range of experiments on three related computer vision tasks, namely rigid
matching of point clouds, non-rigid matching of three-dimensional shapes,
and feature matching for multiple-view stereo. From an optimization
point of view, these matching scenarios differ in their specific definitions
of the similarity term, and typically exhibit energy landscapes with rather
different characteristics. This allows us to assess to what extent vector
extrapolation may be adopted as a means to accelerate convergence in
difficult settings, and whether its introduction into the matching process
may lead to premature convergence and thus poor local optima. We note
that the general improvement is almost one order of magnitude if com-
pared with an optimization carried out with no vector extrapolation at all.
This large increase in performance suggests that there is little reason not
to adopt vector extrapolation for this class of problems, and even in those
cases where the advantage is limited, vector extrapolation may still be
adopted whenever a higher degree of accuracy is required.
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