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Abstract

In recent years, a number of works have demonstrated that processing images using
patch-based features provides more robust results than their pixel based counterparts. A
contributing factor to their success is that image patches can be expressed sparsely in
appropriately defined dictionaries, and these dictionaries can be tuned to a variety of ap-
plications. Yu, Sapiro and Mallat [24] demonstrated that estimating image patches from
multivariate Gaussians is equivalent to finding sparse representations in a structured over-
complete PCA-based dictionary. Furthermore, their model reduces to a straightforward
piecewise linear estimator (PLE). In this work we show how a similar PLE can be for-
mulated to fuse images with various linear degradations and different levels of additive
noise. Furthermore, the solution can be interpreted as a sparse patch-based representa-
tion in an appropriately defined PCA dictionary. The model can also be adapted to better
preserve edges and increase PSNR by adapting the level of smoothing to each local patch.

1 Introduction

In recent years, a number of successful models have been developed for processing im-
ages using patch-based features (see e.g. [10] and references therein). Often critical to this
approach is that natural image patches can be expressed sparsely in appropriately defined
dictionaries which can be tuned to a variety of applications.

In this work we consider the following image degradation model. Suppose an image f
has undergone some linear degradation U (e.g. linear blur, pixel loss, subsampling, etc.)
and is corrupted by additive noise w ~ A'(0,62). Then the observed, degraded data can
be written as y = U f +w. The goal is to recover f from y. Decomposing f into overlap-
ping \/n X \/n vectorized patches f; € R" for i = 1..,I and noting that each patch may have
undergone a unique linear degradation U; and contains different additive noise w; we can
express the degraded image patches as y; = U;f; +w; for i = 1,..,1. Recovering f from y
now becomes the problem of recovering f; from y; and rebuilding f from the clean patches
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The sparse dictionary model for solving this problem can be formulated as follows [9].
Given a dictionary D € R where n < k (D can either be fixed or learned from the data),
for each degraded image patch, y;, one wishes to find a sparse coefficient vector @; € R¥ such
that f; = Da;. The optimal coefficients are typically recovered by solving

A, 3 1
6&; = arg min A||at||, + = ||UiDax — yi[3 M
aEeRK 2

where p = 0 or 1 is most commonly used for inducing sparsity, and A > 0 is fixed and
determined by the noise level.

In [24], the authors proposed a technique for solving generalized inverse problems using
a piecewise linear estimator (PLE) that selects the best patch approximation from a fixed
number of multivariate Gaussians. The authors demonstrate this approach performs better
than (1) as well as other state-of-the-art approaches for a number of linear degradations. Of
particular note is that the coherence of the dictionary is no longer a problem for challenging
applications such as deblurring and zooming.

In this work we propose a model for fusing multiple images, y', ..., y’ of the same field of
view into a single image f with optimal properties from each one. Image fusion is used in a
number of applications where a single image is desired from multi-channel data that retains
desirable information from each channel. This is a problem in military and medical applica-
tions e.g [13, 15, 19], images with different depths of focus e.g. [12, 16, 21], panchromatic
zooming of satellite images e.g. [2, 26], simultaneous image fusion with super-resolution
[23], and fusing noisy image bursts [4], blurry image stacks [18], or noisy/blurry pairs e.g.
[3, 25], an application of particular interest in photography. Due to space limitations, an
exhaustive list of applications would be impossible to include here. But these are a few ex-
amples of the wide range of applications that a generic image fusion model may be able to
address.

To this end, we propose a general framework for fusing a set of degraded images y', ...,y’
that may have different levels additive noise, w',...,w’, as well as different linear degrada—
tions, U',...,U’. We use a patch based approach grven its robustness as well as flexibility. A
simple extension of (1) would be to solve for image patches f; ~ D&;, where

&izargminlla\|p+2 v/ Dec=]113: @
aeRk j=

2&1
However, whether D is a fixed or learned dictionary, (2) has some inherent challenges. If
p = 0, although this non-convex functional can be solved using a pursuit algorithm [21,
22], these pursuit algorithms generally require an ordering of the most influential dictionary
elements for a given patch f. However, the most influential dictionary elements may vary
across the multi-channel data, presenting some challenges. If p = 1, certain common linear
degradation operators U (e.g. subsampling and convolution) do not guarantee the Restrictive
Isometry Property [5, 8] which is typically used to guarantee sparsity when minimizing the
I1 norm. It is possible to construct dictionaries that can still handle these issues for a single
degradation operator, but this becomes quite restrictive when trying to fuse images with
different degradations.

We show that the general approach for solving inverse problems in [24] has a natural
extension to the image fusion problem which avoids some of the above mentioned concerns.
The first primary benefit is its ease in formulation and implementation. There are no param-
eters to be tweaked, and it has a simple closed form solution. The second benefit is that as
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shown in [24], it outperforms comparable methods when applied to single image restoration,
in particular, when restoring low resolution or blurry images. Finally, it naturally lends itself
to simple modifications that can assist in e.g. edge enhancement by weighting a single region
differently across multiple images, depending on the level of detail and degradation in the
given channel.

The rest of the paper is organized as follows. In section 2 we describe the model and
its implementation. In section 3 we describe how solving the GMM based fusion model is
equivalent to solving a sparse dictionary representation problem. Results are contained in
section 4.

2 The Basic Image Fusion Model
2.1 Background

Yu Sapiro and Mallat [24] proposed a simple yet powerful algorithm for solving the follow-
ing general inverse problem: recover a ’true image’ f from a degraded image y =Uf +w
where U is a linear operator and w is additive Gaussian noise. The linear degradation U can
be the identity operator (in the case of denoising) or may represent common degradations
such as pixel loss (masking), blurring, or subsampling. This problem can be particularly
challenging when using a dictionary based approach since the coherence of the dictionary
with respect to the degradation operator U plays a critical role in successful signal recovery.
The authors in [24] proposed a probabilistic based approach using Gaussian Mixture Mod-
els aimed to solve inverse problems with a variety of degradation operators, U, which they
demonstrate is comparable to or improves upon state of the art techniques.

The degraded image, y, is decomposed into vectorized \/n X /n blocks, y; = U;f; + w;,
for i =1,...,1. The idea is that these image patches can be described by a mixture of mul-
tivariate Gaussian distributions with appropriately defined means and covariance matrices.
Assuming we are given K multivariate Gaussians {/N'(t, Xx) }1<x<x parametrized by their
means f; € R" and covariance matrices X, € R"*", each reconstructed patch f; is drawn
from one of these Gaussians (which are equally likely) for some ; € {i,...,K} according to
the probability density function

1 1
p(fi) = Wexp (‘2(fi — ) T (i _.Uk,-)> : 3)

Finding the optimal image patches becomes a non-convex optimization problem, but the au-
thors in [24] proposed a maximum a posteriori expectation-maximization algorithm (MAP-
EM) for solving this problem.

In this work, we demonstrate how this approach can be used to solve the image fusion
problem in which any given number of images of the same field of view can be fused into
a single image, retaining optimal properties from each one. We are not aware of other algo-
rithms that easily adapt to the general fusion problem when variable linear degradations are
involved. To this end, we assume we are given J degraded images of the same field of view,

y=Ur+w!, Ly =0T+

For simplicity we assume the images are perfectly aligned, although the operators U', ..., U
may be different. Perfect alignment is a strong assumption, but our intent to propose a
general framework. We thus refer the reader to a number of existing image registration
algorithms (e.g. [1, 6, 14, 17]) that can be used for specialized applications.

J
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2.2 MAP-EM Algorithm
2.2.1 Signal Estimation and Model Selection (E-step)

We assume that the number of Gaussians, K and their parameters { (t, L) } 1 <k<k are known
(we discuss the initialization in section 2.3) and estimate the signal patches by maximizing
the log a-posteriori probability, log p(fily!, ... y] ;) for each k, as given in (3). We assume
that f; ~ N (0, Zk) and w! ~ N(0, Gzld) for j=1,...,J where Id is the identity matrix. For
each patch i = 1,...,1, we wish to maximize the followmg log a-posteriori likelihood, which
using Bayes rule is

(fiki) = argn}a}cxlogp(f\y},~~~7yf,ik)

J . . R
=argmax Y log p(y!|£;,£x) +log p(fi|£x)
Ki=1

L1 ; . .
=argr}n]pZ<GQIIUif—y!||2 + T8 f +log [ )

e B\
For each fixed & in (4), a simple linear filter gives the minimizer with respect to f as
J 1 -1
Z /vl where W/, =%, (Z — (UHTU/% +Id> ", Q)

=1 9j

Then for i = 1, ..., I, the solution of (4) is given by the pair

1 i A A
fi= st where &= argmin ¥ (c,zwiﬂ‘—yw) FUOTE S log £ ©)

ke{l,..K} j=1 j

In practice K is small (we use K = 19), so k; in (6) is found by simply calculating the energy
for each k = 1,...,K and finding the argument that yields the smallest value. Although each
patch is estimated from a single Gaussian, the patches are overlapping (patches centered at
every pixel in the image are used) and the overlapping patches are averaged at each location
to produce the final result, so each pixel will typically contain a mixture of Gaussians.

2.2.2 Gaussian Model Parameter Estimation (M-Step)

Once the model selection k; and si gnal estimation f; are known for each patch, setting Cj =
{ilki =k} for k = 1,...,K, the new Gaussian parameters are computed by

|ck\ Y jiand £ |C | Y (i — i) ©)

i€Cy, i€Cy,

k

which satisfy (ﬂk,ik) = argmax%):kp({ﬁ},-eck|uk,2k).

2.3 Initialization

The initialization of the Gaussian parameters L and X; are critical to the success of the
model. We follow the initialization in [24] which is based on the observation that in many
learned dictionaries, the dominant patches looked like edge elements of a fixed orientation.
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Initialization:

1. Eighteen binary straight edge images of fixed orientations at 10° increments from 0°
to 170° were generated.

2. For each of the 18 edge images,

(a) the edge image is randomly sampled until a nonsingular covariance matrix can
be formed from the data.

(b) the dominant eigenvector of the covariance matrix (which is almost DC) is set
to be a constant and Gram-Schmidt is used to guarantee the PCA basis is or-
thonormal. Then for k = 1,...,18, X = ByAB;, where By = b} .. .b}] is the
orthonormal PCA basis and Ay = aliag(kk1 ;- A') is the diagonal matrix of as-
sociated (decreasing) eigenvalues. For simplicity, py = 0.

3. A 19" Gaussian was created based on the Discrete Cosine Transform to allow for
more variability in the textures, yielding K = 19 total Gaussians.

4. If the fusion involves a blurring operator for any y/, j = 1,...,J, a hierarchical basis is
used incorporating a second layer of varying positions for each of the directional PCA
bases described above. We refer the reader to [24] Section VII.A for more details.

Remark: An alternate initialization derived from natural images was recently proposed [20]
for a SURE (Stein’s Unbiased Risk Estimator) guided Piecewise Linear Estimator (S-PLE).
The model in [20] is intended for denoising, for which it is both quite successful and math-
ematically well motivated. To the best of our knowledge, it has not yet been extended to
image data that has undergone linear degradations, but this opens up a new line of research
in the consideration of alternate initializations, particularly for specialized applications.

3 Sparse Patch-Based Modeling

The MAP-EM algorithm described in section 2.2 has a direct sparse modeling interpretation.
A straightforward computation shows that the solution in (5) is precisely fl-k = Bkiai-C where

K — arg min iiHUjB - szJriM (8)
a; = gaeR” “ ng i brka—Yy; = )v’fg .

Here By is the orthonormal PCA basis diagonalizing the covariance matrix X; and the AX
are the corresponding eigenvalues in decreasing order. Although the second term in (8) is
a weighted /, norm, it favors dominant eigenvectors and the eigenvalues rapidly decrease in
magnitude [24], thus inducing sparsity. Furthermore, the PCA basis By and the eigenvalues
incorporate information from the data in the M-Step, so this model promotes collaborative

filtering in which the dictionary is learned from the data.
Dictionary construction is particularly important when allowing for linear degradations
U, since here we assume y; = U;Bya; +w;, and while each of the dictionaries By might satisfy
‘good’ dictionary properties (e.g. sparsity, recoverability, and stability [24]), U;B; might not.
For example, if B; contained the atoms by = (1,1,1,...1)7 and by = (1,—1,1,—1,...,—1)T
and U; were a subsampling operator, then U;b; = (1,1,1,...1)7 = U;b, and stability would
be violated. In this case it is equally likely that a sparsity inducing model such as (1) would
choose b, as by to best represent a smooth region, which could be disastrous for the final
result. The initialization and parameter estimation described in section 2 avoid this problem.
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(@) (b) (© ()
Figure 1: (a), (b), (c): images of the same field of view with random 80% masking, (d): the
final fused result using the proposed approach.

Figure 2: Left: Result of running the single image MAP-EM algorithm on the masked image
from figure 1(a) only, PSNR = 26.1547; Middle: Result of running the single image MAP-
EM algorithm on the average of the masked images in figure 1, PSNR = 30.8393; Right:
Result of the proposed fusion model (close up the result in figure 1), PSNR = 32.5033.

4 Results

We tested the fusion model on several sets of images involving varying noise levels and linear
degradations. Our patch sizes are all 8 x 8, so n = 64. In [24] the authors provide a number
of examples that confirm that except in the case of denoising (where BM3D [7] still seems
to outperform all comparable models), the single image PLE using the MAP-EM algorithm
generally provided state-of-the art results for difficult problems involving linear degrada-
tions, inlcuding deblurring and subsampling. Given the range of applied fusion problems,
we provide here several examples to demonstrate the ease and success of the model for fus-
ing image sets with a variety of degradations. Our intent is to provide a proof of concept,
opening the door to more specialized applications by the user. For simplicity we assume the
images are perfectly aligned, although many real world problems do not afford this luxury.
In the latter case, one could choose to preprocess the data with an existing image warping
algorithm, e.g. [1, 6, 14, 17].

Figure | contains a set of images with varying degrees of masking and the final fused
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Table 1: PSNR: PLE [24] -vs- PLE with adaptive smoothing (9)-(10); tests performed on the
standard image database with noise level 6=25; the average increase in PSNR is 0.42.

Image noisy image | GMM [24] | GMM+AS (9)-(10)
Barbara 20.1721 27.6023 28.0768
Blonde 20.1664 28.9708 29.2502
Boat 20.201 25.277 26.1944
Bridge 20.1607 25.1989 25.6419
Brunette 20.1696 33.78 33.8809
Cameraman 20.1783 31.4219 31.5926
Fair 20.1702 28.3473 28.6918
Lena 20.1711 30.8052 31.0635
Oldies 20.1787 28.244 28.5609
Peppers 20.1347 27.515 28.1031
Plane 20.1806 29.4183 30.1749

result using the proposed model. In figure 2, we compare the result of recovering the im-
age from a single masked image using the model in [24], the result of simply averaging
the "known pixels’ from the masked images in figures 1(a-c) and running the single image
piecewise linear estimator from [24], and the result using the fusion model proposed here.
We note both the increase in PSNR, as well as visual improvements which include smoother
homogeneous regions while preserving edges and textures.

Figure 3: 8 coil MRI image, data courtesy of Mark Griswold.

We also modified the denoising model to be able to handle both spatially variable noise
levels as well as treat smooth and textured/edge regions differently. This was incorporated
into the model by making the noise level ¢ vary depending on the characteristics of each
patch i. In this case we wish to solve

J
rrfunZ( 2HUf yl|2> + T8 f+log [ ©)

k%
l]
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(@) (b)
Figure 4: Results of fusing the 8 coils in figure 3: (a) Result from [11], (b) Result from the
proposed method.

where 0;; is either the estimated noise level in image j at patch i, or is weighted depending
on edge information, such as

1
0;j = 0} X <1+k|VGr*yi|2+0'5)' (10)
Here o is the estimated noise level for the entire image, G; is a Gaussian of standard de-
viation T and k£ > 0 is a positive parameter. Note that in patches containing high gradient
information (likely edges), |[VGy *y;| will be large so the so the local noise level o; R %,
yielding less smoothing. In patches with low variations in the gradient, likely smooth re-
gions, the local noise level o;; ~ 3% In our experiments we set T = .07 (for a noise level of
0; = 25) and k = 0.0075 (for images with intensity in the range [0,255]). These parameters
can be locally optimized, but we found this worked fairly well in getting a general improve-
ment on the standard image database (see table 1). It is important to point out that this model
does not necessarily give state of the art results with respect to denoising alone (for exam-
ple, BM3D [7] consistantly achieves better results). The power in the proposed model is the
general framework in which images with multiple degradations can be combined.

We also tested the proposed fusion model on an 8§ coil parallel MRI image dataset. The
final fused result should retain fine features (e.g. vessels in the lung) while not introducing
spurious features. Typical variational denoising methods can lead to the oversmoothing of
fine features for this kind of data, and the more detail preserving techniques often lead to
staircasing and thus unwanted artifacts. The noise level is uniform throughout a single coil,
but varies between coils. A simple application of our fusion model preserved fine detail
while attenuating noise.

Our final example is the fusion of a noisy-blurry pair, an application that could arise when
images with varying exposure times are combined into a single image. Noisy and blurry
versions of the color image in figure 5 were processed separately as well as fused using the
proposed model to obtain a result that incorporated information from both images in the set
(color channels were processed separately). The intensity cross sections in figure 6 were
typical for flat and detailed regions in the image, and demonstrate how the model readily
extracts the relevant information from the images being fused; the flat regions are closer to
the original color than denoising alone, and the details are more accurately preserved than
deblurring alone. Figure 7 contains a close up view of a grassy region below the plane to
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Figure 5: First row: (a) blurry image, PSNR=27.5454 (b) noisy image, PSNR=29.2852, (c)
original clean image; Bottom row: (d) deblurred image only, PSNR=31.3776, (e) denoised
image only, PSNR=33.4498, (f) result of fusing the noisy/blurry pair; that is, both images
from the first row, PSNR=35.7534.)

"
A AR AT AT AL TR
440 ’W’ ! \/\Tr\qﬁf\{“p\y "4\\(/ 'W‘J\‘
T D
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430

(a) (b)
Figure 6: Typical cross-sections of the magnitude of the intensity: (a) flat region of the
sky (b): detailed region across the lettering on the plane (blue=original image, green=fused
result, red=denoised only, magenta=deblurred only).

(a) (b) (© (d)

Figure 7: Close up of a typical textured region: (a) result of deblurring the image in figure
5(a); (b) result of denoising the image in figure 5(b); (c) result of the proposed fusion model;
(d) the original clean image
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illustrate the level of detail preserved in the textured regions of the fused image.

We should note that a number of successful models exist for specialized problems in
image fusion. Our intent is to propose a simple, flexible, and general framework for fusing
images containing noise and linear degradations, and illustrate the behavior and potential of
fusing images in this framework.
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