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Recently, a number of works have show that patch-based image features
can lead to more robust models than their pixel based counterparts. Criti-
cal to their success is that natural image patches can be expressed sparsely
in appropriately defined dictionaries which can be tuned to a variety of ap-
plications. Yu, Sapiro and Mallat [1] demonstrated that estimating image
patches from multivariate Gaussians is equivalent to finding sparse repre-
sentations in a structured overcomplete PCA-based dictionary and can be
solved using a straightforward piecewise linear estimator (PLE). In this
work we show how a similar PLE can be formulated to fuse images with
various linear degradations and different levels of additive noise.

We consider the degradation model y = U f + w, in which a given
image f has undergone some linear degradation U and is corrupted by
additive noise w ~ N (0,62). Decomposing f into overlapping /n X 1/n
vectorized patches f; € R", i = 1..,1 and noting that each patch may have a
unique linear degradation U; and unique additive noise w;, we can express
the degraded image patches as y; = U; f; +w; fori = 1,..,1. Recovering f
from y then becomes the problem of recovering f; from y; and rebuilding
f from ()L, |

In this work we propose a model for recovering f from J images, y/ =
Ulf+wi, j=1,...,,J, where the linear degradations U/and noise levels
wl ~ N(0, GJZ) may vary amongst images. Following the single image re-
covery model proposed in [1], we show that given a fixed number of mul-
tivariate Gaussians parametrized by their means p;, € R” and covariance
matrices X, € R"" k= 1,...,K, each patch f; (fori = 1,. I) can be es-
timated by maximizing the log a posteriori probability p f, | yl - y’ ),
which is equivalent to solving
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The best estimate from each Gaussian is found using a simple linear filter
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For each patch, the solution &; of (1) is found by simply evaluating
the functional at fik (from (2)) for k =1, ..., K, and choosing k; to be the
one that yields the smallest value. Then the minimizing patch for (1) is
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The patches { f,} _ are overlapping and averaged at each location to pro-
duce the final result, f. So each pixel will typically be estimated by a
mixture of Gaussians.

Once the model selection k; and signal estimation f; are known for
each patch, setting C; = {ilk; = k} for k = 1,...,K, the new Gaussian
parameters are cornputed by
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The steps (1) and (4) are iterated until convergence, thus the initialization
of the parameters (L, Zy)k—1,. k is critical. We follow the initialization
proposed in [1] based on clustering edges at fixed orientations.

For each k € {1,...,K}, the solution f,k in (2) can also be interpreted
as a sparse patch-based representation. Specfically, fik = Bka{-‘ where
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Here By, is the orthonormal PCA basis diagonalizing the covariance matrix
¥ corresponding to the k& multivariate Gaussian, and the /l,’;l are the cor-
responding eigenvalues in decreasing order. The weighted /; norm in (5)
favors dominant eigenvectors, and since the eigenvalues rapidly decrease
in magnitude [1], it induces sparsity. Furthermore, the PCA basis B and
the eigenvalues incorporate information from the data, so this model pro-
motes collaborative filtering where the dictionary is learned from the data.

The model is flexible, and the level of smoothing can also be adapted
to each patch. A number of experimental results demonstrate the success
of the model, some of which are included below.

(b) Our fusion result.

(c) blurry image, PSNR=27.5454 (d) noisy image, PSNR=29.2852

(e) original image
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Figure 1: (a-b) fusing 8 coil MRI data; (c-f) fusing a noisy/blurry
pair; (g-h) typical cross-sections of the magnitude of the inten-
sity for the blurry/noisy pair (c)-(d): blue=original, =fused
result (PSNR=35.7534), red=denoised only (PSNR=33.4498), ma-
genta=deblurred only (PSNR=31.3776).

[1] Guoshen Yu, Guillermo Sapiro, and Stephan Mallat. Solving inverse
problems with piecewise linear estimators: From gaussian mixture
models to structured sparsity. /EEE Trans. Image Process., 21(5):
2481- 2499, 2012.



