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Recently, a number of works have show that patch-based image features
can lead to more robust models than their pixel based counterparts. Criti-
cal to their success is that natural image patches can be expressed sparsely
in appropriately defined dictionaries which can be tuned to a variety of ap-
plications. Yu, Sapiro and Mallat [1] demonstrated that estimating image
patches from multivariate Gaussians is equivalent to finding sparse repre-
sentations in a structured overcomplete PCA-based dictionary and can be
solved using a straightforward piecewise linear estimator (PLE). In this
work we show how a similar PLE can be formulated to fuse images with
various linear degradations and different levels of additive noise.

We consider the degradation model y = U f + w, in which a given
image f has undergone some linear degradation U and is corrupted by
additive noise w∼N (0,σ2). Decomposing f into overlapping
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vectorized patches fi ∈Rn, i = 1.., I and noting that each patch may have a
unique linear degradation Ui and unique additive noise wi, we can express
the degraded image patches as yi = Ui fi +wi for i = 1, .., I. Recovering f
from y then becomes the problem of recovering fi from yi and rebuilding
f from { fi}I

i=1.
In this work we propose a model for recovering f from J images, y j =

U j f +w j, j = 1, ..., ,J, where the linear degradations U jand noise levels
w j ∼N (0,σ2

j ) may vary amongst images. Following the single image re-
covery model proposed in [1], we show that given a fixed number of mul-
tivariate Gaussians parametrized by their means µk ∈ Rn and covariance
matrices Σk ∈ Rn×n, k = 1, ...,K, each patch fi (for i = 1, ..., I) can be es-
timated by maximizing the log a posteriori probability p( fi|y1
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J
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which is equivalent to solving
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The best estimate from each Gaussian is found using a simple linear filter
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For each patch, the solution k̂i of (1) is found by simply evaluating
the functional at f k

i (from (2)) for k = 1, ...,K, and choosing k̂i to be the
one that yields the smallest value. Then the minimizing patch for (1) is

f̂i = f k̂i
i . (3)

The patches { f̂i}I
i=1 are overlapping and averaged at each location to pro-

duce the final result, f̂ . So each pixel will typically be estimated by a
mixture of Gaussians.

Once the model selection k̂i and signal estimation f̂i are known for
each patch, setting Ck = {i|k̂i = k} for k = 1, ...,K, the new Gaussian
parameters are computed by

µ̂k =
1
|Ck| ∑

i∈Ck

f̂i and Σ̂k =
1
|Ck| ∑

i∈Ck

( f̂i− µ̂k)T ( f̂i− µ̂k). (4)

The steps (1) and (4) are iterated until convergence, thus the initialization
of the parameters (µk,Σk)k=1,...,K is critical. We follow the initialization
proposed in [1] based on clustering edges at fixed orientations.

For each k ∈ {1, ...,K}, the solution f k
i in (2) can also be interpreted

as a sparse patch-based representation. Specfically, f k
i = Bkak
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ak
i = arg min

a∈Rn

(
J

∑
j=1

1
σ2

j
||U j

i Bka− y j
i ||

2 +
n

∑
m=1

|a[m]|2

λ k
m

)
. (5)

Here Bk is the orthonormal PCA basis diagonalizing the covariance matrix
Σk corresponding to the kth multivariate Gaussian, and the λ k

m are the cor-
responding eigenvalues in decreasing order. The weighted l2 norm in (5)
favors dominant eigenvectors, and since the eigenvalues rapidly decrease
in magnitude [1], it induces sparsity. Furthermore, the PCA basis Bk and
the eigenvalues incorporate information from the data, so this model pro-
motes collaborative filtering where the dictionary is learned from the data.

The model is flexible, and the level of smoothing can also be adapted
to each patch. A number of experimental results demonstrate the success
of the model, some of which are included below.

(a) 8 coil MRI data, co. Mark Griswold. (b) Our fusion result.

(c) blurry image, PSNR=27.5454 (d) noisy image, PSNR=29.2852

(e) original image (f) fusion result, PSNR=35.7534

(g) flat region of the sky (h) lettering on the plane

Figure 1: (a-b) fusing 8 coil MRI data; (c-f) fusing a noisy/blurry
pair; (g-h) typical cross-sections of the magnitude of the inten-
sity for the blurry/noisy pair (c)-(d): blue=original, green=fused
result (PSNR=35.7534), red=denoised only (PSNR=33.4498), ma-
genta=deblurred only (PSNR=31.3776).
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