Blockwise Linear Regression for Face Alignment
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In this paper, we present a deeper analysis of linear regression as an effi-
cient method for face alignment. Linear regression for face alignment [2]
consists of learning a mapping matrix between image features and shape
parameters displacements. Typically, shape parameters are projections of
a set of points which follow a Point Distribution Model onto the subspace
generated by applying Principal Component Analysis to a set of manually
landmarked training images. Often, image features are extracted within
patches around each point, and concatenated into a column vector d. We
call the features belonging to the i-th patch with d’. We can generate ex-
amples for each image j by systematically perturbing the ground-truth pa-
rameters p{) with §p. If we rearrange the training features into the matrix
D, and their corresponding perturbations into the matrix P, the mapping
matrix is obtained through least squares:
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A closer look to Eqn. (1) reveals what is inside DD7. Let us consider each
sample patch i, from the k-th training image, dfc, as a contribution of three
terms: the mean feature vector (intrinsic for all faces) db, the subject-
dependent features di,anda sample noise (which may be produced by the
landmarking process) eli, which is assumed zero-mean gaussian. Then,
DD’ holds all the cross-products between patches along the training set.
However, the main contribution of these products comes from the mean
part. Fig. 1 (left) shows an example of this matrix. Let us have a closer
look to the covariance matrix (right), which consists of the outer products
of the subject-dependent features and the sample noise, since they can not
be separated in practice. As can be seen, most of the information lie on
the diagonal, although some remaining information is found outside it.
Thus, we propose to find which patches are related, and cluster them, in
order to remove all the remaining noise. Once patches are clustered, and
the noise is removed, a "clean" mapping matrix is obtained.

Figure 1: Left: Cross products between samples across the training set
(best viewed in color). Right: Covariance matrix.

Correlation:  For measuring the relation between two patches, we de-
fine the modified Pearson correlation coefficient as:
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where D' are the zero-mean features belonging to patch i. 1/ € [0,1]isa
measure of correlation between structures of independent variables. Two
patches are related if y*/ > 0, where 6 is a threshold.

Clustering:  When two patches are related with a third one, but not with
themselves, they must be clustered together. Two patches are clustered
together if, and only if, there exists some patch that is related with both

patches. If P denotes a patch, the clustering operation can be summarized
as:

P~ Pl = (3P cP|y" >0, y" > 6). 3)

A fast way to see whether two patches are related or not, as well as
whether two patches belong to the same cluster is through a binary matrix
Z, where the element (i, j) denotes whether two patches (i and j) meet
yij >0 (1), or not (0). An algorithm for clustering the data from the
matrix Z and some examples can be found in the paper.

Regression:  Once clusters are obtained, a regression matrix is learned
for a modified version of each one. Instead of working with the whole ma-
trices, we remove non-related products, by working with /DD (thor-
ough mathematics can be found in the paper). Let D; be the features
belonging to the [-th cluster, and My g = {zijf)if)j|Pi,P"' €(C;} . Each
regression matrix is then obtained as follows:
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Fitting:  Fitting is now calculated as follows. Consider the input data
d, which is divided into c clusters d;, and the mean feature vector dg, also
divided into clusters (djq...d.o). Shape parameters are now computed as
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Experiments:  We have trained our algorithm using a mixture of the
Multi-PIE [3] and LFPW [1] databases, and tested it on the BiolD [4].
We have measured the typical me;7 error, by combining the eyes detection
with the fitting done with our algorithm. Fig. 2 shows the results obtained
for different values of 6. As can be seen, the best performance occurs
when considering some relations among patches, although it may vary
depending on the database.
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Figure 2: Fitting results obtained for the BioID database, varying 6.
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