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Abstract

We consider unsupervised (parameter) learning for general Markov random fields on
bipartite graphs. This model class includes Restricted Boltzmann Machines. We show
that besides the widely used stochastic gradient approximation (a.k.a. Persistent Con-
trastive Divergence) there is an alternative learning approach – a modified EM algorithm
which is tractable because of the bipartiteness of the model graph. We compare the re-
sulting double loop algorithm and the PCD learning experimentally and show that the
former converges faster and more stable than the latter.

1 Introduction
Markov random fields (MRF) provide a good basis for modelling joint distributions of col-
lections (fields) of interdependent random variables. In order to express complex interde-
pendencies between them, it is necessary to introduce factors of higher order (arity) which,
however, are complicated to handle if considered non-parametric. A common compromise is
to restrict the arity of the factors, but to introduce additional latent variables. Marginalising
over the latent variables then leads to a model with higher arity factors for the remaining,
“visible” variables. Such and similar approaches have been used e.g. in computer vision for
several models: fields of experts [8], regression tree fields [5] to name a few.

One of the most simple model classes of such type are MRFs on bipartite graphs, where
vertices of the first part index “visible” random variables and vertices of the second part
index latent variables. A subclass of such models is well known as Restricted Boltzmann
Machines (RBM) [4]. They are often used as building blocks of hierarchical models in the
context of “deep learning” (see [1] for a review).

This paper considers unsupervised (parameter) learning for general MRFs on bipartite
graphs. That means that we assume training samples which consist of i.i.d. realisations of
the field of visible variables only. The corresponding learning task is non-trivial because the
(log) likelihood is a non-concave function of the model parameters, and, what is worse, its
gradient is not tractable. A common approach is to calculate an approximation of the gradient
by applying a stochastic gradient method known as “Persistent Contrastive Divergence” [13,
14]. Another option, discussed in [7], is to marginalise over the latent variables (what can
be done up to the unknown partition sum) and to maximise the pseudo-likelihood for the
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resulting higher order model directly. Notice however, that the resulting objective function
is then no longer concave.

The main contribution of this paper is to introduce an alternative learning approach for
the mentioned model class – a modified EM-algorithm with pseudo-likelihood estimator
in the M-step, which is tractable on account of the bipartiteness of the model graph. In
principle, such a modified EM algorithm can be applied for parameter learning of arbitrary
MRFs [15]. The resulting algorithm will however remain to be intractable, because so is
the computation of the posterior pairwise marginal probabilities in the E-step. It is the bi-
partiteness of the graph, which ensures that the E-step and the M-step of the EM algorithm
are both tractable, if the maximum likelihood estimator in the M-step is replaced by the
pseudo-likelihood estimator.

We will fix the notations, the model class and the learning task in the next section and
introduce the tractable modification of the EM algorithm in section 3. An experimental
comparison of the resulting double loop algorithm with the PCD method given in section 4,
shows that the former converges faster (by an order of magnitude) and more stable than the
latter.

2 The model and the learning task

2.1 The model class
MRFs on bipartite graphs can be described as follows. Let (V,E) be an undirected bipartite
graph and V1, V2 denote its parts. Let X be a collection of K1-valued random variables
indexed by vertices of V1. That is, X = {Xi | i ∈ V1}, where each Xi is a K1-valued random
variable. Similarly, Y denotes a collection of K2-valued random variables indexed by vertices
of the second part V2. Both co-domains K1 and K2 are assumed finite. We denote realisations
of the random field (X ,Y ) by (x,y), i.e.

x : V1→ K1, y : V2→ K2.

The joint p.d. of an MRF on (V,E) can be written as an exponential family (assuming strictly
positive probability mass)

pu(x,y) =
1

Z(u)
exp ∑

i j∈E

〈
ϕϕϕ(xi,y j),uuui j

〉
, (1)

where ϕϕϕ : K1×K2 → R|K1||K2| designates the vector valued indicator mapping ϕlm(k,k′) =
δlkδmk′ and u = {uuui j | i j ∈ E} denotes the set of model parameters.

This model class includes Restricted Boltzmann Machines [4] which are often used in
the context of deep learning [1]. An RBM in its narrow sense assumes that the co-domains
of both groups of random variables are binary |K1|= |K2|= 2 and the bipartite model graph
is complete.

Despite the fact that the considered model class has pairwise factors only, it can be used
to model higher order factors in the following way. If the variables Xi, i ∈V1 are considered
as “visible” and the variables Yj, j ∈V2 as latent, then, by marginalising over the field Y , we
get a Gibbs Random Field with higher order factors for the field X .

Notice that due to the bipartiteness of the graph both conditional p.d.s pu(y | x) and
pu(x | y) factorise

pu(y | x) = ∏
j∈V2

pu(y j | xN j), (2)
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where N j = {i ∈V1 | i j ∈ E} denotes the neighbourhood of the vertex j ∈V2.

2.2 The learning task
We assume from here on that the variables Xi, i ∈ V1 are visible, whereas the variables Yj,
j ∈ V2 are latent and consider the task of parameter estimation given an i.i.d. sample T` of
` realisations of the field X . It is assumed that the realisations were generated by pu(x) =
∑y∈Y pu(x,y) with unknown u. If the maximum likelihood estimator is used, the task is

1
` ∑

x∈T`
log ∑

y∈Y
pu(x,y)→max

u
, (3)

where Y denotes the set of all possible realisations of the field Y . Substituting the model
class (1), the task reads

L(u) =
1
` ∑

x∈T`
log ∑

y∈Y
exp ∑

i j∈E

〈
ϕϕϕ(xi,y j),uuui j

〉
− logZ(u)→max

u
(4)

where
Z(u) = ∑

x∈X
∑

y∈Y
exp ∑

i j∈E

〈
ϕϕϕ(xi,y j),uuui j

〉
(5)

denotes the partition sum. It is easily seen that both terms in (4) are convex functions of u.
The log-likelihood L(u) is therefore a difference of convex functions.

3 Algorithms for the learning task

3.1 Discussion of existing methods
The gradient of the log-likelihood is easy to derive

∇uuui j L(u) =
1
` ∑

x∈T`
Eu(ΦΦΦi j|X = x)−Eu(ΦΦΦi j), (6)

where ΦΦΦi j denotes the random variable ΦΦΦi j(X ,Y ) = ϕϕϕ(Xi,Yj), i j ∈ E. The first term in (6)
is tractable because the conditional p.d. pu(y | x) factorises, which makes the computation of
the conditional expectations tractable and because the sum over the elements of the learning
sample T` is tractable. The second term is, on the contrary, not tractable – it requires to
compute pairwise marginal probabilities pu(xi,y j). It is well known, that calculating the
marginals for an MRF is #P hard [2]. Therefore, one has to rely on approximate algorithms.
Let us shortly discuss possible options.

Variational methods like belief propagation or other message passing algorithms fail to
estimate pairwise marginal statistics even approximately [3]. This can be explained by the
following argument. All these methods approximate the pairwise log-marginals by

log p(xi = k,y j = k′)∼ ai(k)+ui j(k,k′)+b j(k′), (7)

i.e. as being equal to uuui j up to a modular function. While this is true for trees, it is wrong for
general graphs because correlations caused by loops are ignored.
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Another option for estimating the required marginals is Gibbs sampling. However, Gibbs
sampling is very slow if applied correctly [12]. To generate just one realisation (x,y), it is
often necessary to run thousands of iterations of the sampler.

A third option is a stochastic gradient method which is often used in the context of
RBMs and is designated as Persistent Contrastive Divergence [13, 14]. PCD keeps a reali-
sation (x(t),y(t)) at each iteration t. The current model estimate u(t) is used to re-sample the
realisation (x(t+1),y(t+1)) The new realisation is then used to estimate the second term of the
gradient, simply by replacing the expectation of ΦΦΦi j by its realisation ϕϕϕ(xi,y j). Finally, a
new model estimate u(t+1) is obtained by applying a gradient step. Clearly, there are no guar-
antees for convergence to the global optimum because the objective function is not concave
and the true gradient is replaced by an approximation.

We may try to avoid to deal with L(u) directly by applying the EM algorithm. An itera-
tion of it reads as follows.
E-step: Calculate posterior probabilities

β
(t)(y | x) := pu(t)(y | x) (8)

for each realisation x ∈ T` using the current parameter estimate u(t). This task is feasible for
the considered model class (see (2)).
M-step: Given the current β (t) maximise the log-likelihood for complete information

Lc(u) =
1
` ∑

x∈T`
∑

y∈Y
β (y | x) log pu(x,y)→max

u
. (9)

Let us denote by p∗ the distribution p∗(x,y) = β (y | x)p∗(x), where p∗(x) is the empirical
distribution associated with the sample T`. Substituting the model (1), the objective function
in the M-step can be written as

Lc(u) =
1
` ∑

i j∈E

〈
Ep∗(ΦΦΦi j),uuui j

〉
− logZ(u). (10)

It is concave in u, but, again, the problem is the gradient of the second term (the logarithm
of the partition sum Z). Computing its components requires to compute pairwise marginal
statistics of the model pu(x,y) and is therefore not tractable.

3.2 A modified EM algorithm
Following the interpretation given by one of the authors of the EM-algorithm [10], the task
to be solved in each M-step is itself a (parameter) learning task, now in presence of complete
data. The model parameters u must be estimated given the “observed” distribution p∗(x,y).
As we have seen, this task is still not tractable for the considered class of MRFs. On the
other hand, the definition of p∗ implies that i.i.d. samples from p∗ can be easily generated.
The key idea is therefore to replace the maximum likelihood estimator in the M-step by any
consistent and tractable estimator. A reasonable choice is the pseudo-likelihood estimator.

Let us denote by T ∗ an i.i.d. sample of realisations (x,y) generated from p∗(x,y). The
pseudo-likelihood estimator for MRFs on bipartite graphs reads

Lp(u) = ∑
(x,y)∈T ∗

[
log pu(y | x)+ log pu(x | y)

]
→max

u
. (11)
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Figure 1: MRF on a translational invariant bipartite graph. Visible variables depicted as
green circles, latent variables depicted as red squares. Edges and receptive field are high-
lighted for one of the latent variables.

The objective function is concave and has a tractable gradient

∇uuui j Lp(u) = ∑
(x,y)∈T ∗

[
2ϕϕϕ(xi,y j)−Eu(ΦΦΦi j|X = x)−Eu(ΦΦΦi j|Y = y)

]
. (12)

Summarising, each iteration of the modified EM algorithm reads as follows
E-step: Calculate posterior probabilities

β
(t)(y | x) := pu(t)(y | x) (13)

for each realisation x ∈ T` using the current parameter estimate u(t). Sample one (or several)
realisations y for each x ∈ T`. These data define the current sample T ∗ for the M-step.
M-step: Maximise the pseudo-likelihood

Lp(u) = ∑
(x,y)∈T ∗

[
log pu(y | x)+ log pu(x | y)

]
(14)

e.g. by using a gradient ascend algorithm. Set u(t+1) to be equal to the maximiser.
It remains to discuss the choice for the initial model parameters u(0). The simplest option

is to choose them randomly in the vicinity of the origin. Yet there is a better option for
MRFs on bipartite graphs. Let us consider the sub-graph defined by a vertex j ∈ V2 and its
neighboursN j ⊂V1 and the random variables Yj, Xi, i∈N j. Taken alone, they define a naive
Bayes model. The parameters of such a model can be learned by a standard EM-algorithm.
Applying it for each of the sub-models separately, gives a good initialisation for the model
parameters.

In summary, the resulting double loop algorithm is easy to implement and has the same
per iteration time complexity as PCD. On the other hand, we have no proof that the sequence
of likelihood values L(u(t)) is increasing. This should be true in the limit of an infinite
training sample because the pseudo-likelihood estimator is known to be consistent. How-
ever, there is no such guarantee for finite training samples. We will compare the proposed
algorithm with PCD for direct likelihood maximisation in the experimental section.

4 Experiments
We aim to apply the discussed type of MRFs for shape modelling. By this we mean to model
simple shapes and spatial relations (like “above, ”inside“, etc.) for segments. Bearing in



6 FLACH, SIXTA: UNSUPERVISED LEARNING FOR MRFS ON BIPARTITE GRAPHS

Figure 2: A realisation (x,y) generated by the P9 model.

mind such applications, we make the following assumptions for all presented experiments.
The vertex sets V1 and V2 are congruent subsets of Z2 and the values of the random variables
xi represent segment labels. The graph structure is translation invariant, i.e., N j+a =N j +a
for all j,a ∈ Z2 such that j, j+ a ∈ V2 (see Fig. 1). We call N j receptive field of the latent
variable Yj. The model parameters are translation invariant as well

uuui j = uuua, ∀{i, j} ∈ E s.t. i− j = a. (15)

Please notice that the models we are using here for experiments differ from those usually
used for experiments on RBMs (see e.g. [7]) in two respects. We use large size fields in con-
trast to usually used models of relatively small size. The latent variables are often considered
as features for subsequent classification. Here in contrast, they are used to model complex
distributions for the field X .

4.1 The Pn model
We consider the Pn model for binary segmentations in the first experiment. It is a generalised
Potts model on cliques of size n [6]. The factors of the Gibbs Random Field associated with
the cliques N j are two-valued; a large value is assigned to homogeneous realisations of
XN j with either of the two possible segment labels. A small value is assigned to all other
realisations of XN j . To express this higher order model by an MRF on a bipartite graph, we
make each clique N j a receptive field of a three-valued latent variable Yj. The conditional
p.d.s p(xN j | y j) for the first two values of Yj are non-zero only for the two homogeneous
realisations xN j ≡ 0,1 respectively. The conditional p.d. for the third value of Yj is uniform.
A mixture of the three p.d.s corresponds to a factor of the Pn model.

We have implemented a P9 model with receptive fields of size 3× 3. Fig. 2 shows a
random realisation (x,y) (colour coded) generated by this model. We have generated 50
realisations of X (size 256x256) by extensive Gibbs sampling (104 sampling iterations per
example) and used them for learning. The model was learned by the stochastic gradient
method (PCD) and by the proposed modified EM-algorithm. In this experiment we were
not using the ”naive Bayes“-based initialisation (see sec. 3.2). We have chosen the size
512x512 for the realisation (x,y) needed for the gradient estimation in the PCD algorithm.
The optimal step width for the gradient ascends were chosen empirically for each of the
algorithms.

To compare the two learning algorithms, we display the L∞ norm of the gradients over
the iteration number in Fig. 3. The sawtooth-like shape of the curve for the modified EM-
algorithm is explained as follows. The (negative) pseudo-likelihood and its gradient decrease
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Figure 3: Comparison of stochastic gradient method and the proposed modified EM-
algorithm. Left: norm of the gradient. Right: KL divergence from true marginals

in the inner loop of the algorithm (M-step). Then the y-fields are re-sampled using the new
model estimate (E-step), what causes the jump in the gradient of the pseudo-likelihood.

Overall, it is clearly seen that the proposed modified EM-algorithm converges faster by
an order of magnitude and much more stable than the stochastic gradient algorithm. Of
course, this comparison alone does not say anything about the models learned by the re-
spective algorithm. The objective functions are different and, moreover, the gradient of the
likelihood (in the PCD algorithm) is determined approximately only.

It would not be very reasonable to compare the learned models by comparing their pa-
rameters u directly. They are not unique due to possible re-parametrisations. Moreover,
models with different distributions pu(x,y) may have the same distribution pu(x). Therefore
we have chosen to compare the resulting marginal distributions pu(xN j) for the receptive
fields of size 3x3 which have 512 possible realisations. They were estimated for the true
model as well as for each of the learned models by extensive sampling. Fig. 3 shows the
KL-divergence between the marginals of the true model and the learned models for some
iteration numbers. Again, it is clearly seen that the proposed modified EM-algorithm con-
verges faster and much more stable than the PCD algorithm.

4.2 Cell segmentations

We consider a more complex model for the second experiment. The goal is to learn a prior
model for segmenting cells in microscope images. We assume a typical segmentation to con-
tain non-occluding cells with roughly circular shaped cytoplasm and circular shaped nuclei.
Artificial segmentations of the type shown in Fig. 4 were used as training data. To learn such
segmentations we have chosen a model with the following structure. The co-domain K1 of
the variables Xi has three values corresponding to the three possible segment labels – back-
ground, cytoplasm, nucleus. The co-domain K2 of the latent variables was chosen to have
five values. The receptive fields for the latter were chosen to have roughly the size of a cell,
11× 11 pixels in our case. To speed up learning, we used the ”naive Bayes“-initialisation
(see sec. 3.2).

Fig. 4 shows the learning curves for the modified EM-algorithm and the stochastic gra-
dient algorithm. Again, the former converges much faster and more stable than the latter.
Moreover, comparing realisations generated by the learned models (see Fig. 5), it is seen
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Figure 4: Left: cell segmentation (artificial). Right: Comparison of stochastic gradient
method and the proposed modified EM-algorithm.

Figure 5: Realisations (x,y) randomly generated by the learned cell segmentation models.
Left pair: model learned by modified EM-algorithm. Right pair: model learned by stochastic
gradient algorithm. Three colours (red, green, black) were used to represent the possible
values of xi, i ∈ V1 and four colours (red, green, black, yellow) were used to represent the
possible values of the latent variables y j, j ∈V2.

that the model learned by the modified EM-algorithm generates desired segmentations after
260 learning cycles. The model learned by the PCD algorithm has not yet fully ”captured“
the desired segmentations even after 800 learning cycles.

4.3 Lung segmentation
The aim of the last experiment differs from those of the previous experiments – here we want
to demonstrate the usefulness of MRFs on bipartite graphs for segmentation tasks. Let us
consider lung segmentation in X-ray chest radio-graphs as an example. As typical for such
tasks, it is desirable to have a segmentation model which prefers e.g. smooth boundaries
and simultaneously utilises a probabilistic anatomical atlas. This is easy to achieve by using
models of the considered type. A translational invariant model as shown in Fig. 1 is extended
by one more latent variable with edges to all pixels of the segmentation. This ”global“ latent
variable realises a ”mixture“ of anatomical atlases jointly with the other latent variables,
which model translational invariant local segment/boundary features.

Such a model was used as a prior model for segmenting lungs in X-ray chest radio-
graphs from the database provided by Japanese Society of Radiological Technology [11].
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Figure 6: From left to right: Chest radio-graph, ground truth segmentation of lung, GrabCut
segmentation, smooth boundary + atlas model segmentation.

The ”local“ latent variables where chosen to have a co-domain K2 with 18 possible values
and receptive fields of size 7× 7 pixels in one case and 9× 9 pixels in the other one. We
also considered different component numbers (4 and 12) for the global latent variable. The
models were learned on 124 randomly chosen ground truth segmentations from the database.
We used the ”naive Bayes“ initialisation to speed up the learning. The appearance model was
chosen to be conditionally pixel-wise independent given the segmentation. The grey-value
distributions for the two segment labels are assumed as mixtures of (three) Gaussians each
and were learned semi-supervised for each test image (the remaining 123 images from the
database) separately. For this, the segmentation was fixed in regions for which the learned
atlas mixture predicts a unique a-priory decision. Slightly bigger regions (80% sure decision
of the atlas mixture) were used for learning the initial appearance model.

We have used the standard GrabCut method [9] as baseline. Notice, that the underlying
model is an MRF on a lattice without latent variables. The parameters of the appearance
model were learned semi-supervised by fixing the segmentation in the same ”unique deci-
sion“ regions. Table 1 shows the average segmentation precision and its variance obtained
by the models with different receptive fields and different number of labels for the global
latent variable.

GC 7x7/4 7x7/12 9x9/4 9x9/12
mean 0.521 0.822 0.836 0.829 0.839
var. 0.117 0.072 0.068 0.073 0.067

Table 1: Lung segmentation precision (dice metric)

It is clearly seen that the considered model class outperforms GrabCut substantially.
Not surprisingly, the results are the better the bigger the receptive fields of the local latent
variables (responsible for smooth boundaries) and the larger the co-domain of the global
latent variable (responsible for the anatomical atlas).

5 Conclusions
The main contribution of the paper was to introduce an alternative method for unsupervised
(parameter) learning of general MRFs on bipartite graphs. The modified EM algorithm
converges an order of magnitude faster than standard stochastic gradient methods. This
opens perspectives to tackle important problems like e.g. unsupervised structure learning of
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MRFs. It remains, however, to prove theoretically that the modified EM algorithm enjoys
similar properties as the standard EM algorithm.
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