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This paper considers unsupervised (parameter) learning for general MRFs
on bipartite graphs. That means that we assume training samples which
consist of i.i.d. realisations of the field of visible variables only. The vari-
ables indexed by the vertices of the other graph part are assumed to be
latent. The corresponding learning task is non-trivial because the (log)
likelihood is a non-concave function of the model parameters, and, what
is worse, its gradient is not tractable. A common approach is to calcu-
late an approximation of the gradient by applying a stochastic gradient
method known as “Persistent Contrastive Divergence” [5]. Another op-
tion, discussed in [3], is to marginalise over the latent variables (what can
be done up to the unknown partition sum) and to maximise the pseudo-
likelihood for the resulting higher order model directly. Notice however,
that the resulting objective function is then no longer concave.

The main contribution of this paper is to introduce an alternative
learning approach — a modified EM-algorithm with pseudo-likelihood es-
timator in the M-step, which is tractable on account of the bipartiteness
of the model graph. In principle, such a modified EM-algorithm can be
applied for parameter learning of arbitrary MRFs [6]. The resulting algo-
rithm will however remain to be intractable, because so is the computation
of the posterior pairwise marginal probabilities in the E-step. It is the bi-
partiteness of the graph, which ensures that the E-step and the M-step of
the EM-algorithm are both tractable, if the maximum likelihood estimator
in the M-step is replaced by the pseudo-likelihood estimator.

MREFs on bipartite graphs can be described as follows. Let (V,E) be
an undirected bipartite graph and V;, V, denote its parts. Let X be a col-
lection of K|-valued random variables indexed by vertices of V. That is,
X ={X; | i € V;}, where each X; is a Kj-valued random variable. Sim-
ilarly, Y denotes a collection of K,-valued random variables indexed by
vertices of the second part V,. Both co-domains K; and K, are assumed
finite. We denote realisations of the random field (X,Y) by (x,y), i.e.
x:Vi—=Kjandy: V, = Kj.

The joint p.d. of an MRF on (V,E) can be written as an exponential
family (assuming strictly positive probability mass)
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where @: K; x Ky — RIKi K| designates the vector valued indicator map-
ping @y, (k, k') = 88 and u = {u;; | ij € E} denotes the set of model
parameters. This model class includes Restricted Boltzmann Machines
[2] which are often used in the context of deep learning [1].

We assume from here on that the variables X;, i € Vi are visible,
whereas the variables Y, j € V, are latent and consider the task of param-
eter estimation given an i.i.d. sample 7; of ¢ realisations of the field X. It
is assumed that the realisations were generated by p, (x) = ¥yecy pu(x,y)
with unknown u. If the maximum likelihood estimator is used, the task is
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where ) denotes the set of all possible realisations of the field Y. A com-
mon method to maximize the likelihood (2) in the presence of incomplete
data is the EM-algorithm.

E-step: Calculate posterior probabilities

By |x) = pyn (v %)

for each realisation x € 7, using the current parameter estimate u(®). This
task is feasible for the considered model class, because the conditional
p.d. pu(y | x) factorises.

M-step: Given the current ﬁ<’ ) maximise the log-likelihood for complete
information
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Figure 1: MRF on a translational invariant bipartite graph. Visible vari-
ables depicted as green circles, latent variables depicted as red squares.
Edges and receptive field are highlighted for one of the latent variables.

This objective function is concave in u but computing the components of
the gradient requires to compute pairwise marginal statistics of the model
pu(x,y) and is therefore not tractable.

Following the interpretation given by one of the authors of the EM-
algorithm [4], the task to be solved in the M-step is itself a (parameter)
learning task, now in presence of complete data. The model parameters
u must be estimated given the “observed” distribution p*(x,y) = B(y |
x)p*(x), where p*(x) is the empirical distribution associated with the sam-
ple 7;. This implies that i.i.d. samples from p* can be easily generated.
The key idea is therefore to replace the maximum likelihood estimator in
the M-step by any consistent and tractable estimator. A reasonable choice
is the pseudo-likelihood estimator.

Let us denote by 7* an i.i.d. sample of realisations (x,y) generated
from p*(x,y). The pseudo-likelihood estimator for MRFs on bipartite
graphs reads
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This objective function is concave and has a tractable gradient. Optimiza-
tion task in the M-step then reads to maximise the pseudo-likelihood (5)
e.g. by using a gradient ascend algorithm.

In the rest of the paper we discuss implementation details of the pro-
posed algorithm and provide experimental comparison with the PCD. We
show, that despite the same per iteration time complexity our algorithm
converges faster (by an order of magnitude) and more stable. On the other
hand, we have no proof that the sequence of likelihood values L(u(’>) is
increasing. This should be true in the limit of an infinite training sample
because the pseudo-likelihood estimator is known to be consistent.
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