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Elastic shape analysis on non-linear Riemannian manifolds provides
an efficient and elegant way for simultaneous comparison and registra-
tion of non-rigid shapes. In such formulation, shapes become points on
some high dimensional shape space. A geodesic between two points cor-
responds to the optimal deformation needed to register one shape onto
another. The length of the geodesic provides a proper metric for shape
comparison [2, 3, 4]. Joshi et al. [2] and Srivastava et al. [7] proposed
the Square Root Velocity Function parametrization (SRVF) that allow
to compute geodesic distances between closed curves R”. The distance
is invariant to different shape preserving geometric transformation in-
cluding translation, rotation and re-parametrization. The computation
of geodesics, and therefore the metric, is computationally very expen-
sive as it involves a search over the space of all possible rotations and
re-parameterizations. This problem is even more important in shape re-
trieval scenarios where the query shape is compared to every element in
the collection to search.

In this paper, we propose a fast approximation of this metric, using
Kernel functions, while keeping its nice properties such as the invariance
to geometric transformations. We search a subspace, equipped with the
standard dot product, and in which the discriminative power of the orig-
inal distance between two curves is retained. The key idea is to design a
kernel function k(-,-) associated with the elastic metric, and build a map-
ping function such that the dot product between mapped elements is as
close as possible to the original kernel k(x,y). This mapping is based on
the Nystrom method for kernel approximation [1]. The advantage of this
formulation is that the heavy-computational metric becomes now a dot
product in the new subspace with very low dimensions. This reduces sig-
nificantly the computation time needed to compare one shape to all the
elements of the collection to search. We further show that the approxi-
mated distance preserves the invariance properties and achieves retrieval
performance that is competitive with the original metric.

Given the elastic distance between two curves d(f, B;), we consider
a kernel function k(f;, B,) associated with it. The approximation we pro-
pose finds a mapping function P to some specific space such that the dot
product between mapped elements P(B;) P(B,) is as close as possible
to the original kernel (B, 3,). We first consider the expression of the
triangular kernel [5], k(B;, B2) associated to d(B;,32) as follows:
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With this expression of k, we derive the projection into a lower di-
mensional space that preserves most of the metric proprieties.

Let us consider a training set A = {f3;} used for the training of the pro-
jection P(-). We want P such that Vf3;, B; € A, P(B:) " P(B;) = k(B:. B))-
The Gram matrix of the kernel k on A is given by K = [k(B;, Bj)]p, p,c.A-
We propose to approximate the matrix K by a low rank version and to
compute the corresponding projection. This is known as the Nystrom ap-
proximation for kernels, and has been used to speed up large scale kernel
based classifiers in machine learning [1, 8]. Since k is a Mercer kernel
and thus positive semi-definite, we can compute its eigen-decomposition:
K = VAV The non-linear projection P(-) is then given by:
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Where [k(Bi, B)]p,c.4 is the vector of entry-wise computation of the kernel
between 3 and the elements of the training set. Let us consider the matrix
Y of the projected elements of A: ¥ = [P(B)]gc 4. The Gram matrix in

the projection space using the linear kernel is thus:
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Furthermore, the Euclidean distance between mapped elements perfectly
fits to the original distance on the training set, Vf3;, B; € A:
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The more A is a good sampling of the original space, the closer the lin-
earization P along with the dot product are to the original kernel k and
thus the better the distance d(-,-) is approximated. Some of the eigenval-
ues of the Kernel matrix are often very small compared to the other ones
and can be safely discarded to further gain in computational efficiency.
In this case, the reconstruction of the Gram matrix (respectively the dis-
tance matrix) on the training set is not perfect. However, the associated
projectors often encode noise in the data, and discarding them can act as a
de-noising process, as a PCA would do with linear projections. Since we
are using a non-linear mapping, this process is analog to Kernel PCA [6].
We illustrate the effectiveness of the proposed method using three
different experiments: shape retrieval from two databases and 3D face
recognition application. The experiments show that approximated dis-
tances proposed in this paper achieves a very similar performance to the
original elastic metric. The most important advantage is that the distance
computing is reduced to a simple dot product on some projection space.
This drastically reduces the running time of the computing process, since
the non-linear computations have a complexity increasing linearly with
the size of the collection (instead of quadratic with the original distance).
Several applications can benefit from this work. This includes 3D face
recognition, 3D biometrics and 3D shape retrieval and matching.
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