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1 The Model

Given a set of observations X = {x;}}¥, across multiple camera views, where each observation corresponds to a complete
trajectory within a camera FOV, person re-identification can be defined as the problem of identifying the set of indicator
variables associated with the observations z = {z;})¥.;. To identify the label z; € [1,..., Z] associated with each trajectory,
we utilise a combination of visual information, the appearance features, and the transitions between the cameras. To address
the issues associated with appearance-based methods in our proposed person re-identification algorithm, we model each
person’s appearance using camera-specific illumination and camera gain. We identify the indicator labels by performing
Bayesian inference using Gibbs sampling. Each observation x; = {a;,e;, t;,1;} consists of: [; € [1,..., L] the camera that
records the observation; the time of entry e; in a camera’s FOV; the time of leaving the camera’s FOV t;; and the observed
appearance features a;. We define the likelihood as
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where p({a;}¥,]2;,1;) is modelled as a; = g;(r, + w;), where g; is the multiplicative gain constant of camera [, r, is the
RGB color model, averaged over the entire trajectory, w; is the illumination noise associated with camera [, and the terms
are distributed as:
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The transitions between cameras are modelled as
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It is clear from its structure (Fig 1a) that this model does not allow for efficient inference, since the Markov blanket of any
observation is the complete set of observations and indicator variables preceding it. Yet if the latent indicator variables are
known, the observations of a person become independent of all other persons, and the model becomes much simpler (Fig 1b)

2 Gain per Camera: Derivation of the Conditional Distribution

The posterior distribution over the gain parameters for camera [ in terms of the likelihood distribution and prior distribution
is given as,
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We define a gamma distribution for the gain parameters «y, §;. i.e. G(ay, ;). However, for easier analytical derivation
we choose to represent G(ay, ;) using its Gaussian distribution approximation N(af;, (a8?)™1) or equivalently N(uf, A7) .
Thus, eqn 7 can now be wriiten as
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where, u;”, A}’ represent the mean and precision of the Gaussian distribution defined over the [ camera’s illumination
value, while yj, ] represent the mean and precision of the Gaussian distribution defined over the [ camera’s gain value,

and Al:{ai}ivz"l represents the set of observations, and N; indicates the number of trajectories observed in camera [. The
likelihood distribution is formulated as a Gaussian distribution given as,



Figure 1: (a) Full graphical model of our probabilistic person re-identification algorithm and (b) Graphical model if the
latent variables z; are known.
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Given, the Gaussian likelihood distribution, we choose a conjugate prior distribution to represent the multiplicative gain
parameter. Thus, the prior distribution in 8 is given using a normal-gamma distribution as,
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where, ag, Ko, Bo, porepresent the fixed hyper-parameters for the prior distribution. Since, the normal-gamma distribution
is a conjugate prior for the normal likelihood distribution, the resultant posterior is also a normal-gamma distribution given
as,
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where, o, k9, 69, pdrepresent the fixed hyper-parameters for the posterior distribution.
To solve for the posterior distribution, we first combine the likelihood distribution (eqn 9) with the prior distribution (10).
Thus the resultant posterior distribution is given as,
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where, V) represents the number of trajectories observed by each camera ! and nj represents the number of trajectories
belonging to person z observed by camera [. Note that N; = > nj. Next, the likelihood distribution in 12 is factorised
according to each person’s appearance, resulting in the formulation in eqn 13. Before we proceed with our analytical
derivation, we define certain terms. Firstly, we define the empirical mean and sum of square matrices, which can be given

by,
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Additionally, for notational convenience, we represent the mean and precision within the first exponential term by the

following,

Wy = pf (pz + i)

Using the above definitions, we can re-write the terms inside {} of the first exponential term in 13 as follows,
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Next, we replace Eqn 15 inside the {} of the first exponential term in Eqn 13 and re-write the equation, resulting in the
posterior distribution
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Next, we expanding the terms inside {} of the exp. of eqn 16. For clarity, we expand each individual term inside the {}

of the exp separately. Firstly, the second term i.e. > nf(@— (] (= + 1)) T (N (A, + AP)) (@ — (1] (12 + 1)) expands as
follows,
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Next, the third term i.e. KA (4] — pf)? expands as follows,
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Using the expanded terms Eqn (1718) inside {} of the exp, we now get.
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Rearranging the terms in the above equation in terms of u%ﬂand piwe get
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To obtain the solution for the posterior hyperparameters, we utilize completing the squares. We know that the result for
completing the squares for a quadratic equation is given as
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Comparing Eqn 19 with a quadratric equation az? + bx + ¢, we can write the coefficient and constant terms as
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Using the result for completing the squares and the expansion of the coefficients, we can complete the square for Eqn 19.
This results in
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Plugging the above results (17-21) into Eqnl6, we get
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Comparing Eqn 26 with the normal-gamma posterior distribution in Eqn 11, we can observe that ;9 = h or
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Similarly by comparing the equations, we can also see that k)] = a, which can be written as,
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Given solutions for yfand k9, we next solve for oy To solve for o, we consider the multiplicative terms before the
exponential in Eqn 16 and expand them using the following identities

det(cA) = c"det(A)

(xa)b _ xab

where c is a scalar, A is a matrix and n denotes the size of the square matrix A. Moreover, we know that n; =) nj.
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Comparing the terms associated with ofin Eqn 29 with the terms associated with adin Eqn 11 we get the following
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Finally, we solve for $¢ To solve for the final hyper-parameter term 39, we combine the second and third exponential
term in Eqn 26 exp (—%) exp(—\33) and equate it to the second exp term in Eqn 11.
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Next, we expand &
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Continuing our expansion, we perform cross multiplication for simplification
Replacing k into Eqn 31, we get

N/BY = A B + 0.5 S2(nf = (A (As + Af)) +0.5 ) nja" (A (As + Af))a + 0.5k " —

A0.5 < (2, mpa” (As + AP ps + 30, nfa” (As + AP + wud)? )
U A (A AP+ T (s + AP S 20 (A ADp + o

Thus, 89 is given as,
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