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1 The Model

Given a set of observations X = {xi}f\il across multiple camera views, where each observation corresponds to a complete
trajectory within a camera FOV, person re-identification can be defined as the problem of identifying the set of indicator
variables associated with the observations z = {z;})¥.;. To identify the label z; € [1,..., Z] associated with each trajectory,
we utilise a combination of visual information, the appearance features, and the transitions between the cameras. To address
the issues associated with appearance-based methods in our proposed person re-identification algorithm, we model each
person’s appearance using camera-specific illumination and camera gain. We identify the indicator labels by performing
Bayesian inference using Gibbs sampling. Each observation x; = {a;, e;,t;,1;} consists of: I; € [1,..., L] the camera that
records the observation; the time of entry e; in a camera’s FOV; the time of leaving the camera’s FOV ¢;; and the observed
appearance features a;. We define the likelihood as
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where p({a;}¥,|z;,1;) is modelled as a; = g;(r, + w;), where g; is the multiplicative gain constant of camera [, r, is the
RGB color model, averaged over the entire trajectory, w; is the illumination noise associated with camera [, and the terms
are distributed as:
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The transitions between cameras are modelled as
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It is clear from its structure (Fig 1a) that this model does not allow for efficient inference, since the Markov blanket of any
observation is the complete set of observations and indicator variables preceding it. Yet if the latent indicator variables are
known, the observations of a person become independent of all other persons, and the model becomes much simpler (Fig 1b)

2 Appearance per Person: Derivation of the Precision Conditional Distribu-
tion

The posterior distribution over the appearance precision parameter for person z in terms of the likelihood distribution and
prior distribution, using the Markov blanket, is given as,
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We define a Wishart distribution as the prior for the appearance precision parameters A, and a Gaussian distribution
for the likelihood. Additionally, for convenience, we approximate the gain parameters ¢, 3; in the above Eqn 7 terms of a

Normal distribution N(xf,\/) , where pf = a8 and A = allﬁz . Thus, eqn 7 can now be re-wriiten as
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where, p}”, A}’ represent the mean and precision of the Gaussian distribution defined over the I camera’s offset value, and

AZ:{ai}ivzzlrepresents the set of observations belonging to person z. N, indicates the number of trajectories belonging to
person z. The Gaussian likelihood distribution is given as,



Figure 1: (a) Full graphical model of our probabilistic person re-identification algorithm and (b) Graphical model if the
latent variables z; are known.
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The Wishart prior distribution in 8 is given as,
z z (Glit) 1 z
p(Azlag, B5) o< [Az| 2 exp —5157’(501\2:) (10)

where, o, 5§ represent the fixed hyper-parameters for the prior distribution. Since, the Wishart distribution is a conjugate
prior for the Gaussian likelihood, the resultant posterior is also a Wishart distribution given as,
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where, af, 57 represent the hyper-parameters for the posterior distribution. To solve for the posterior distribution, we
first combine the likelihood distribution (eqn 9) with the prior distribution (10). Thus the resultant posterior distribution
p(A;|az, BZ) is given as,
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Note that in Eqn 13, we choose to factorize the likelihood distribution according to each camera. In Eqn 13 n! represents
the number of trajectories belonging to person z observed by camera [. Note that N, = >, n!. Before we proceed with our
analytical derivation, we define certain terms. Firstly, we define the empirical mean and sum of square matrices, which can
be given by,
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Using the above definitions, we can expand the terms inside {} of the first exponential term in 13 as follows,
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Next, we replace Eqn 14 inside the {} of the first exponential term in Eqn 13 and re-write the equation, resulting in the
posterior distribution p(A.|aZ, 52)
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Next, we expanding the terms inside {} of the second exp. of eqn 15. Firstly, the second term i.e. >, nl (@ — (uf(p. +
BTN (A + ) (@ — (f (= + ")) expands as follows,
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In Eqn 16, we omit terms not containing A, as multiplicative constants are absorbed into the normalising constant. Thus,
Eqn 16 simplifies as,
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Substituting Eqn 17 inside the {} in Eqn 15, we get
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Solving for o To solve for the final hyper-parameter term a?, we compare the posterior distribution in Eqn 18 with the
posterior distribution given in Eqn 11. On comparing the multiplicative constants and using the following identities
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In the above derivation, comparing the exponents of the determinant
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Solving for 32 To solve for the final hyper-parameter term 32, we compare the posterior distribution in Eqn 18 with the

posterior distribution given in Eqn 11. On comparing the exp and using the following identities
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trace(A 4+ B) = trace(A) + trace(B)

trace(z? $x) = trace(z’ zX)

We can observe that
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In the above Eqn, the RHS can be expanded as following
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Comparing the terms inside the exponential, after adding the traces and factoring out A, we get
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