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1 The Model

Given a set of observations X = {xi}Ni=1 across multiple camera views, where each observation corresponds to a complete
trajectory within a camera FOV, person re-identi�cation can be de�ned as the problem of identifying the set of indicator
variables associated with the observations z = {zi}Ni=1. To identify the label zi ∈ [1, . . . , Z] associated with each trajectory,
we utilise a combination of visual information, the appearance features, and the transitions between the cameras. To address
the issues associated with appearance-based methods in our proposed person re-identi�cation algorithm, we model each
person's appearance using camera-speci�c illumination and camera gain. We identify the indicator labels by performing
Bayesian inference using Gibbs sampling. Each observation xi = {ai, ei, ti, li} consists of: li ∈ [1, . . . , L] the camera that
records the observation; the time of entry ei in a camera's FOV; the time of leaving the camera's FOV ti; and the observed
appearance features ai. We de�ne the likelihood as

p({xi}Ni=1|{zi}Ni=1) =

N∏
j=1

p(aj |zj , lj) p(lj |{li}j−1
i=1 , {zi}

j
i=1) p(ej |{ti}j−1

i=1 , {zi}
j
i=1) (1)

where p({aj}Ni=1|zj , lj) is modelled as ai = gl(rz + wl), where gl is the multiplicative gain constant of camera l, rz is the
RGB color model, averaged over the entire trajectory, wl is the illumination noise associated with camera l, and the terms
are distributed as:

gl ∼ Gamma(αgl , β
g
l ), which we approximate as N (µgl , (Λ

g
l )

−1) (2)

rz ∼ N (µz, (Λz)
−1) (3)

wl ∼ N (µwl , (Λ
w
l )−1) (4)

The transitions between cameras are modelled as

lj | {li}j−1
i=1 , {zi}

j−1
i=1 ∼ Mult(lj ; θli), i : zi = zj ∧ zk 6= zj , i < k < j (5)

ej | {ti}j−1
i=1 , {zi}

j
i=1 ∼ N (ej − ti;µli,lj ,Λ−1

li,lj
), i : zi = zj ∧ zk 6= zj , i < k < j (6)

It is clear from its structure (Fig 1a) that this model does not allow for e�cient inference, since the Markov blanket of any
observation is the complete set of observations and indicator variables preceding it. Yet if the latent indicator variables are
known, the observations of a person become independent of all other persons, and the model becomes much simpler (Fig 1b)

2 Illumination per Camera: Derivation of the Mean Conditional Distribution

The posterior distribution over the appearance mean parameter for camera l in terms of the likelihood distribution and prior
distribution is given as,

p(µwl |Al, αl, βl, µl,Λwl , l, z) = p(Al|αl, βlµwl ,Λwl , µz,Λz, z, l)p(µwl ) (7)

We de�ne a Gaussian distribution as the prior for the illumination mean parameters µwl and a Gaussian distribution
for the likelihood. Additionally, for convenience, we approximate the gain parameters αl, βl in the above Eqn 7 terms of a
Normal distribution N(µgl , λ

g
l ) , where µ

g
l = αlβl and λ

g
l = 1

αlβ2
l
. Thus, eqn 7 can now be re-wriiten as

p(µl|Al, µgl , λ
g
l , µl,Λl, µz, l, z) = p(Al|µgl , λ

g
l , µ

w
l ,Λ

w
l , µz,Λz, z, l)p(µ

w
l ) (8)

where, µwl ,Λ
w
l represent the mean and precision of the Gaussian distribution de�ned over the l camera's o�set value,

Al={ai}Nl

i=1represents the set of observations observed by camera l, where Nl indicates the number of trajectories belonging
to camera l. The Gaussian likelihood distribution is given as,
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Figure 1: (a) Full graphical model of our probabilistic person re-identi�cation algorithm and (b) Graphical model if the
latent variables zi are known.

p(Al|µgl , λ
g
l , µ

w
l ,Λ

w
l , µz,Λz, z, l) =

Nl∏
i=1

N(ai|µgl (µz + µwl ), λgl (Λz + Λwl )) (9)

The Gaussian prior distribution in 8 is given as,

p(µwl |µw0 ,Λw0 ) ∝ |Λw0 |
1
2 exp

(
−1

2
(µwl − µw0 )TΛw0 (µwl − µw0 )

)
(10)

where, µw0 ,Λ
w
0 represent the �xed hyper-parameters for the prior distribution. Since, the Gaussian distribution is a

conjugate prior for the Gaussian likelihood, the resultant posterior is also a Wishart distribution given as,

p(µwl |µwn ,Λwn ) ∝ |Λn|
1
2 exp

(
−1

2
(µwl − µwn )TΛn(µwl − µwn )

)
(11)

where, µwn ,Λ
w
n represent the hyper-parameters for the posterior distribution. To solve for the posterior distribution, we

�rst combine the likelihood distribution (eqn 9) with the prior distribution (10). Thus the resultant posterior distribution
p(µwl |µwn ,Λwn ) is given as,

∝
Nl∏
i=1

N(ai|µgl (µz + µwl ), λgl (Λz + Λwl ))|Λw0 |
1
2 exp

(
−1

2
(µwl − µw0 )TΛw0 (µwl − µw0 )

)
(12)

∝
Z∏
z=1

[
|λgl (Λz + Λol )|n

z
l /2
]
exp

−1

2


Z∑
z=1

nz
l∑

i=1

(ai − µgl (µz + µwl ))T (λgl (Λz + Λwl ))(ai − µgl (µz + µwl )




. . . |Λw0 |
1
2 exp

(
−1

2
(µwl − µw0 )TΛw0 (µwl − µw0 )

)
(13)

Note that in Eqn 13, we choose to factorize the likelihood distribution according to each person. In Eqn 13 nzl represents
the number of trajectories belonging to person z observed by camera l. Note that Nl =

∑
z n

z
l . Before we proceed with our

analytical derivation, we de�ne certain terms. Firstly, we de�ne the empirical mean and sum of square matrices, which can
be given by,

ā =
1

n

∑
i

ai

S2 =
1

n− 1

n∑
i=1

(ai − ā)T (ai − ā)
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Using the above de�nitions, we can expand the terms inside {} of the �rst exponential term in 13 as follows,

=

Z∑
z=1

nz
l∑

i=1

(
(ai − a)T (λgl (Λz + Λwl ))(ai − a) + (a− µgl (µz + µwl ))T (λgl (Λz + Λwl ))(a− µgl (µz + µwl ))

)
=

Z∑
z=1

(
S2
l (nzl − 1)(λgl (Λz + Λwl )) + nzl (a− µ

g
l (µz + µwl ))T (λgl (Λz + Λwl ))(a− µgl (µz + µwl ))

)
=
∑
z

S2
l (nzl − 1)(λgl (Λz + Λwl ))

. . .+
∑
z

nzl (a− (µgl (µz + µwl )))T (λgl (Λz + Λwl ))(a− (µgl (µz + µwl ))) (14)

Next, we replace Eqn 14 inside the {} of the �rst exponential term in Eqn 13 and re-write the equation, resulting in the
posterior distribution p(µwl |µwn ,Λwn )

∝
Z∏
z=1

[
|λgl (Λz + Λwl )|n

z
l /2
]

. . . exp

(
−1

2

{∑
z

S2
l (nzl − 1)(λgl (Λz + Λwl )) +

∑
z

nzl (a− (µgl (µz + µwl )))T (λgl (Λz + Λwl ))(a− (µgl (µz + µwl )))

})

. . . |Λw0 |
1
2 exp

(
−1

2
(µwl − µw0 )TΛw0 (µwl − µw0 )

)
∝

Z∏
z=1

[
|λgl (Λz + Λwl )|n

z
l /2
]
|Λw0 |

1
2 exp

(
−1

2
(µwl − µw0 )TΛw0 (µwl − µw0 )

)

. . . exp

(
−1

2

{∑
z

S2
l (nzl − 1)(λgl (Λz + Λwl )) +

∑
z

nzl (a− (µgl (µz + µwl )))T (λgl (Λz + Λwl ))(a− (µgl (µz + µwl )))

})
(15)

Next, we expanding the terms inside {} of the second exp. of eqn 15. Firstly, the second term i.e.
∑
l n

l
z(a − (µgl (µz +

µwl )))T (λgl (Λz + Λwl ))(a− (µgl (µz + µwl ))) expands as follows,

=
∑
z

nzl a
T (λgl (Λz + Λwl ))a−

∑
z

nzl 2a
T (λgl (Λz + Λwl ))(µgl (µz + µwl )))

. . .+
∑
z

nzl (µ
g
l (µz + µwl )))T (λgl (Λz + Λwl ))(µgl (µz + µwl )))

=
∑
z

nzl a
Tλgl Λza+

∑
z

nzl a
Tλgl Λ

w
l a−

∑
z

nzl 2a
T (λgl Λz)µ

g
l µz

−
∑
z

nzl 2a
T (λgl Λz)µ

g
l µ

w
l −

∑
z

nzl 2a
T (λgl Λ

w
l )µgl µz −

∑
z

nzl 2a
T (λgl Λ

w
l )µgl .µ

w
l . . .

. . .+
∑
z

nzl µ
g
l
2µTz (λgl Λz)µz +

∑
z

nzl µ
g
l
2µTz (λgl Λ

w
l )µz

. . .+
∑
z

nzl µ
g
l
2µwl

T (λgl Λz)µ
w
l +

∑
z

nzl µ
g2
l µ

w
l
T (λgl Λ

w
l )µwl

. . .+
∑
z

nzl 2µ
g
l
2µTz (λgl Λz)µ

w
l +

∑
z

nzl 2µ
g2
l µ

T
z (λgl Λ

w
l )µwl (16)

In Eqn 16, we omit terms not containing µwl , as multiplicative constants are absorbed into the normalising constant. Thus,
Eqn 16 simpli�es as,

=−
∑
z

nzl 2a
T (λgl Λz)µ

g
l µ

w
l −

∑
z

nzl 2a
T (λgl Λ

w
l )µgl µ

w
l +

∑
z

nzl µ
g
l
2µwl

T (λgl Λz)µ
w
l

+
∑
z

nzl µ
g2
l µ

w
l
T (λgl Λ

w
l )µwl +

∑
z

nzl 2µ
g
l
2µwTl (λgl Λz)µz +

∑
z

nzl 2µ
g
l
2µwTl (λgl Λ

w
l )µz (17)
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Next, we expand the terms inside the �rst exponential term in Eqn 15 exp
(
− 1

2 (µwl − µw0 )TΛw0 (µwl − µw0 )
)
as,

exp

(
−1

2
(µwl − µw0 )TΛw0 (µwl − µw0 )

)
= exp

(
−1

2

(
µwTl Λw0 µ

w
l − 2µwTl Λw0 µ

w
0 + µwT0 Λw0 µ

w
0

))
(18)

Substituting Eqn 17 inside the {} of the second exponential term in Eqn 15, and Eqn 18 into the �rst exponential term,
and combining the exponential terms, we get

∝
Z∏
z=1

[
|λgl (Λz + Λwl )|n

l
z/2
]
|Λw0 |

1
2 exp(−1

2
{
∑
z

S2
l (nzl − 1)(λgl (Λz + Λwl ))−

∑
z

nzl 2a
T (λgl Λz)µ

g
l µ

w
l

. . .−
∑
z

nzl 2a
T (λgl Λ

w
l )µgl µ

w
l +

∑
z

nzl µ
g
l
2µwTl (λgl Λz)µ

w
l +

∑
z

nzl µ
g2
l µ

wT
l (λgl Λ

w
l )µwl

. . .+
∑
z

nzl 2µ
g
l
2µwTl (λgl Λz)µz +

∑
z

nzl 2µ
g
l
2µwTl (λgl Λ

w
l )µz + µwTl Λw0 µ

w
l − 2µwl

TΛw0 µ
w
0 + µwT0 Λw0 µ

w
0 }) (19)

Solving for µwn and Λwn To solve for the hyper-parameter terms, we consider the terms inside the {} of the exponential
term the posterior distribution in Eqn 19 and arrange them according to the terms µwTl µwl and µwl , resulting in,

=µwTl (
∑
z

nzl µ
g
l
2λgl Λz +

∑
z

nzl µ
g
l
2λgl Λ

w
l + Λw0 )µwl +

. . . µwTl

(
−
∑
z

nzl 2λ
g
l µ

g
l Λza−

∑
z

nzl 2µ
g
l λ
g
l Λ

w
l a+

∑
z

nzl 2µ
g
l
2λgl Λzµz +

∑
z

nzl 2µ
g2
l λ

g
l Λ

w
l µz − 2Λw0 µ

w
0

)
. . .
∑
z

S2
l (nzl − 1)(λgl (Λz + Λwl )) + µwT0 Λw0 µ

w
0 (20)

Next, we use completing the square formula to derive µwn . First, the completing the square formula for a generic framework
is given as follows,

xTAx+ xTB + C = (x−H)TA(x−H) +K (21)

K = C − 1

4
BTA−1B; H = −1

2
A−1B

Comparing Eqn 20 and LHS of Eqn 21, we can see that,

A =
∑
z

nzl µ
g
l
2λgl Λz +

∑
z

nzl µ
g
l
2λgl Λ

w
l + Λw0

B = −
∑
z

nzl 2λ
g
l µ

g
l Λza−

∑
z

nzl 2µ
g
l λ
g
l Λ

w
l a+

∑
z

nzl 2µ
g
l
2λgl Λzµz +

∑
z

nzl 2µ
g2
l λ

g
l Λ

w
l µz − 2Λw0 µ

w
0

C =
∑
z

S2
l (nzl − 1)(λgl (Λz + Λwl )) + µwT0 Λw0 µ

w
0

Writing Eqn 20 in the form of Eqn 21, we get

µwTl Aµwl + µwTl B + C = (µwl −H)TA(µwl −H) +K (22)

H =

∑
z n

z
l λ
g
l µ

g
l Λza+

∑
z n

z
l µ

g
l λ
g
l Λ

w
l a−

∑
z n

z
l µ

g
l
2λgl Λzµz −

∑
z n

z
l 2µλ

g
l Λ

w
l µz + Λw0 µ

w
0∑

z n
z
l µ

g
l
2λgl Λz +

∑
z n

z
l µ

g
l
2λgl Λ

w
l + Λw0

(23)

K =
∑
z

S2
l (nzl − 1)(λgl (Λz + Λwl )) + µwT0 Λw0 µ

w
0 −

1

4
BTA−1B (24)

Using Eqn 22 inside the exponential term in Eqn 19, we get

∝
Z∏
z=1

[
|λgl (Λz + Λwl )|n

z
l /2
]
|Λw0 |

1
2 exp

(
−1

2

{
(µwl −H)TA(µwl −H) +K

})

∝
Z∏
z=1

[
|λgl (Λz + Λwl )|n

z
l /2
]
|Λw0 |

1
2 exp

(
−1

2
(µwl −H)TA(µwl −H)

)
exp

(
−K

2

)
(25)
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Comparing the �rst exponential term in Eqn 25 with posterior distribution in Eqn 11, we can see that

µwn =

∑
z n

z
l λ
g
l µ

g
l Λza+

∑
z n

z
l µ

g
l λ
g
l Λ

w
l a−

∑
z n

z
l µ

g
l
2λgl Λzµz −

∑
z n

z
l 2µλ

g
l Λ

w
l µz + Λw0 µ

w
0∑

z n
z
l µ

g
l
2λgl Λz +

∑
z n

z
l µ

g
l
2λgl Λ

w
l + Λw0

Λwn =
∑
z

nzl µ
g
l
2λgl Λz +

∑
z

nzl µ
g
l
2λgl Λ

w
l + Λw0
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