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Abstract

Person re-identification accuracy can be significantly improved given a training set
that demonstrates changes in appearances associated with the two non-overlapping cam-
eras involved. Here we test whether this advantage can be maintained when directly
annotated training sets are not available for all camera-pairs at the site. Given the train-
ing sets capturing correspondences between cameras A and B and a different training set
capturing correspondences between cameras B and C, the Transitive Re-IDentification
algorithm (TRID) suggested here provides a classifier for (A,C) appearance pairs. The
proposed method is based on statistical modeling and uses a marginalization process for
the inference. This approach significantly reduces the annotation effort inherent in a
learning system, which goes down from O(N2) to O(N), for a site containing N cameras.
Moreover, when adding camera (N + 1), only one inter-camera training set is required
for establishing all correspondences. In our experiments we found that the method is
effective and more accurate than the competing camera invariant approach.

1 Introduction
Person re-identification (ReID) consists of recognizing individuals over different camera
views. The ReID problem has lately received increasing attention especially due to its im-
portant role in surveillance systems, which should be able to keep track of people after they
have left the field of view of one camera and entered the field of view of any overlapping or
non-overlapping camera.

ReID can use spatio-temporal cues (e.g., [7, 10, 14, 15, 20, 26]) and appearance based
cues, on which we focus here. There are three major approaches to appearance based ReID:
(1) searching for features invariant to changes in illumination, resolution, pose, and back-
ground, while using some fixed distance measure for making a same or not-same decision
(e.g., [3, 4, 8, 9, 13, 18, 21]); (2) designing metrics that aim to bring feature vectors associ-
ated with shared identities close to one another and those associated with different identities
far from one another (e.g., [11, 16, 22, 23, 25, 28]); and (3) trying to learn the transformation
that the appearance of a person in one domain undergoes when passing to another domain
(e.g. [2, 19]).

As opposed to the first two approaches, which are camera-invariant and deal with re-
identifying a person at any new location, the third approach is camera-specific. It focuses on
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the natural setup of surveillance systems in which the cameras are stationary, and exploits
the fact that for each pair of cameras, the transfer domain is limited. It was shown in [2] that
this approach can yield better ReID performance.

The main downside inherent in the camera-specific ReID approach is that distinct inter-
camera training sets must be collected for each camera-pair. That is, for each camera-pair,
videos consisting of the same people passing in front of both cameras must be collected
and annotated. Thus, given a site with N cameras C1,C2, ...,CN , N(N− 1)/2 inter-camera
transformations must be learned using N(N− 1)/2 = O(N2) distinct inter-camera training
sets. This requirement may be impractical.

In this paper, we aim at reducing the number of required direct inter-camera training sets
from O(N2) to O(N). We present a transitive algorithm which uses inter-camera training sets
only for N− 1 camera-pairs (Ci,Ci+1), i = 1, ...,N− 1, and refer to these pairs as directly
trainable pairs; see Fig. 1(a). The transitive method presented here suggests a way to infer
a ReID classifier for any camera-pair in the system, given only these limited training sets.
The proposed algorithm enables the inference of a classifier for a non-directly trainable pair
(Ci,Ci+2) given only the available training sets associated with the camera pairs (Ci,Ci+1)
and (Ci+1,Ci+2); see Fig. 1(b). The inter-camera classifiers for any other camera pair can be
deduced by recursively applying the transitive algorithm; see Fig. 1(c). Here we focus on a
triplet case and notate: [Ci Ci+1 Ci+2] = [A B C]; see Fig. 2.

A naive solution would be to use the union of the available (A,B) and (B,C) training sets
for learning the (A,C) ReID classifier, assuming that the inter-camera variability information
embedded in them reflects some of the true (A,C) variability. In a sense, this approach is
camera-invariant. It works, but its performance is still inferior to that of a directly trained
classifier; see Fig. 3. Our goal is to find a more effective use of the available training sets
that will decrease this performance gap.

The proposed Transitive Re-IDentification algorithm (TRID) establishes a path between
the non-directly trainable camera pair (A,C) by marginalization over the domain of possible
appearances in camera B. Camera B plays the role of the ‘connecting element’ between
cameras A and C. This approach indeed minimizes the performance gap while effectively
narrowing the number of required training sets.

2 The Transitive Re-identification Algorithm (TRID)
Given two training sets SAB,SBC associated with camera-pairs (A,B) and (B,C), respectively,
TRID inferes a classifier for the (A,C) camera-pair, for which SAC is missing (Fig. 2).

After some notations, Sec. 2.2 derives the transitive inference, Sec. 2.3 presents the TRID
algorithm, and Sec. 2.4 provides further analysis of its discriminative ability.

2.1 Notations
We consider the description of a person’s appearance as a d dimensional random variable.
It clearly depends both on the person’s identity and the camera. The notation xA refers to
a feature vector describing the appearance observed by camera A. XA = xA implies that
the random variable XA associated with the appearance in camera A gets the value xA. For
short notation, we usually denote this event simply by “xA”. We also use the binary variable
YAB, which gets the value 1 if and only if the appearances given in A and in B are of the same
identity. When the feature vector is known to correspond to a particular individual of identity
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(a) (b) (c)

Figure 1: Illustration of a system consisting of N cameras C1,C2, ...,CN : (a) Inter-camera training
sets are available only for N− 1 directly trainable pairs (Ci,Ci+1), i = 1, ...,N− 1. (b) The transitive
algorithm infers classifiers for the non-directly trainable pairs (Ci,Ci+2). (c) Inter-camera classifiers
for any other camera pair in the system can be deduced by recursively applying the transitive algorithm.

(a) (b)

Figure 2: The transitive ReID setup. Given the training sets SAB ((a)left) capturing correspondences
between people 1...n and a training set SBC ((a)right) capturing correspondences between different
people n+1, ...,m+n, we would like to be able to classify (A,C) pairs (b) without an SAC training set.
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ICT trained on 3−7 data
ICT trained on 3−5 and 5−7 data
SDALF for cameras 3−7

Figure 3: Motivation: A typical case of ReID with 3 cameras: [A B C]=[3 5 7] from the SAIVT-
SoftBio [5] database. We present CMC curves (for more details about CMC, see Sec. 3.2.2) comparing
the performance of 3 approaches for ReID for cameras (A,C). The camera specific ICT algorithm [2]
trained with annotated data from cameras A and C outperforms the camera invariant SDALF [4]
method. A noticeable performance gap exists between ICT trained with (A,C) data and ICT trained
using the union of (A,B) and (B,C) training sets. The TRID algorithm aims to minimize this gap by
exploiting the (A,B) and (B,C) training sets more wisely, for cases where a direct training set (A,C) is
not available.
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i, we denote it by xi
A. Thus, the pair {(xi

A,x
i
B)} is a pair of feature vectors corresponding to

the same person but to different cameras.

2.2 The Transitive Inference
Our goal is to estimate the conditional probability P(YAC|xA,xC). Although a training set
consisting of annotated pairs {(xi

A,x
i
C)} is not available, we can exploit the annotated sets

SAB = {(xi
A,x

i
B)}, i = 1, ...,n and SBC = {(x j

B,x
j
C)}, j = n+ 1, ...,n+m. We use different

indexes to emphasize that the two training sets possibly correspond to disjoint sets of people.
To obtain P(YAC|xA,xC) we marginalize over all values of YAB,YBC and XB:

P(YAC|xA,xC) = ∑
yAB∈{0,1}

∑
yBC∈{0,1}

[
∫

xB∈Rd
P(YAC,YAB = yAB,YBC = yBC,xB|xA,xC)dxB] , (1)

establishing a transitive path between the non-directly trainable camera-pair (A,C)1.
Applying the chain rule,

P(YAC|xA,xC) = ∑
yAB

∑
yBC

[
∫
xB

P(YAC,YAB = yAB,YBC = yBC|xA,xB,xC) fXB(xB)dxB] , (2)

where fXB(xB) is a multi-dimensional probability distribution function that represents all pos-
sible appearance vectors in camera B, and which is independent of the particular appearance
vectors observed in cameras A and C. Explicitly writing the four additive terms,

P(YAC|xA,xC) =∫
xB

P(YAC,YAB,YBC|xA,xB,xC) fXB(xB)dxB +
∫
xB

P(YAC,YAB,YBC|xA,xB,xC) fXB(xB)dxB

+
∫
xB

P(YAC,YAB,YBC|xA,xB,xC) fXB(xB)dxB +
∫
xB

P(YAC,YAB,YBC|xA,xB,xC) fXB(xB)dxB ,
(3)

we can see that two of them can be eliminated: for a (XA,XB,XC) triplet for which YAB = 0
and YBC = 1, YAC cannot be 1. The same applies for the case where YAB = 1 and YBC = 0. We
apply the chain rule again for the first and fourth terms left in eq. (3) and get

P(YAC|xA,xC) =∫
xB

P(YAB|xA,xB,xC)P(YBC|xA,xB,xC,YAB)P(YAC|xA,xB,xC,YAB,YBC) fXB(xB)dxB

+
∫
xB

P(YAB|xA,xB,xC)P(YBC|xA,xB,xC,YAB)P(YAC|xA,xB,xC,YAB,YBC) fXB(xB)dxB .
(4)

YAB is independent of XC. YBC is independent of both XA and of YAB (given XB). YAC is
independent of XB when YAB = YBC = 0 and is 1 when YAB = YBC = 1. Therefore,

P(YAC|xA,xC) = P(YAC|xA,xC)
∫
xB

P(YAB|xA,xB)P(YBC|xB,xC) fXB(xB)dxB

+
∫
xB

P(YAB|xA,xB)P(YBC|xB,xC) fXB(xB)dxB .
(5)

By a simple reorganization, the desired conditional probability is expressed by

P(YAC|xA,xC) =

∫
xB

P(YAB|xA,xB)P(YBC |xB,xC) fXB (xB)dxB

1−
∫

xB
P(YAB|xA,xB)P(YBC |xB,xC) fXB (xB)dxB

. (6)

1Readers interested only in the final result may go directly to eq. (6).
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2.3 The Algorithm
2.3.1 Obtaining the Probability for Directly-Trainable Camera-Pairs

According to eq. (6), in order to estimate the probability P(YAC|xA,xC) for a match associated
with cameras A and C, one must provide the probabilities for matches P(YAB|xA,xB) and
P(YBC|xB,xC) associated with camera-pairs (A,B) and (B,C), respectively. A few algorithms
were suggested for obtaining same vs. not-same classifiers for ReID (e.g., [2, 16, 25, 28]).
Such classifiers, when provided with an inter-camera training-set, output either a binary
decision or a continuous score. The scores, or decision values, are usually used for the
ranking of different candidate appearance pairs. Any of these methods can be exploited for
our need, provided that it can be modified to output a probability.

We chose the ICT algorithm [2], which has shown state-of-the-art results for modeling
the transfer of appearances associated with two specific-cameras. Given a training set SAB
associated with a specific camera pair (A,B), the ICT algorithm trains a classifier on the
concatenation of appearances from the two cameras: Let [a|b] denote the concatenation of
two vectors a and b. The ICT classifier is trained using positive examples [xi

A|xi
B] for which

the identity associated with xi
A and xi

B is the same, and negative examples [xi
A|x

j
B] for which

the identities associated with xi
A and x j

B are different. In our implementation we used color
based descriptors (though, in principle, any other descriptors could be used). ICT trains an
SVM using an RBF kernel. Given a candidate pair (xA,xB), the concatenation [xA|xB] is fed
to the classifier and the decision value is obtained. In TRID, the decision values are converted
to probability estimates using a sigmoid according to Platt’s widely used method [24].

2.3.2 Integrating Over the ‘Connecting Elements’

The multi-dimensional probability distribution function, fXB(xB), can be estimated by differ-
ent methods for density estimation using the xB vectors available in the SAB and SBC train-
ing sets, and also other, non-annotated, instances associated with people passing in front of
camera B. However, estimating high-dimensional density is hard and the integration is com-
putationally costly. Thus, the proposed TRID algorithm approximates the integral by a sum
over all available xB vectors. Let SB be the set of all such xB vectors,

P(YAC|xA,xC)≈
1
|SB|

∑
xB∈SB

P(YAB|xA,xB)P(YBC |xB,xC)

1− 1
|SB|

∑
xB∈SB

P(YAB|xA,xB)P(YBC |xB,xC)
. (7)

In the process of optimizing the transitive ReID, the SVM parameters were determined
such that the probability estimates and the implied integrand are wide and smooth functions
of the integration variable xB. This smoothness and the large number of available (non-
annotated) examples makes the sum a good approximation of the integral.

2.4 Asymptotic Analysis
To evaluate the discriminative ability of TRID, we propose an asymptotic simplified analysis
of eq. (7). Assume that the xB’s are K = |SB| randomly drawn examples and the response
of the probabilistic classifier P(YAB|xA,xB) is a binary random variable with mean p. When
the appearances observed in cameras A and C belong to different people, the variables YAB
and YBC are independent and P(YAB|xA,xB)P(YBC|xB,xC) = p2. For large K, the numerator of
eq. (7) converges to its expected value p2, while its variance converges to 1

K p2(1− p2). When
the observed appearances are of the same identity, the responses are positively correlated and
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P(YAB|xA,xB)P(YBC|xB,xC) = pp′, where p′ ∈ (p,1] reflects the amount of dependency. In
this case, for large K, the numerator converges to pp′ and the variance to 1

K pp′(1− pp′). The
s.d. decrease with K. Therefore, for increasing K, the value of the numerator for the same
identities case is larger than the numerator for the different identities case with arbitrary large
probability. As for the denominator, a similar analysis implies that it converges to 2p− p2 for
the different identities case and to 2p− pp′ (which is smaller) for the same identities case.
Thus, dividing by the denominator further emphasizes the distinction between the values
corresponding to same and different identities.

3 Experiments

First, in Sec. 3.1 we use simple low-dimensional synthetic data to demonstrate how TRID
achieves the transitive inference and to enhance the reader’s intuitive understanding of our
method. Then, in Sec. 3.2 we describe experiments on a multi-camera setup. We describe the
dataset used, provide some implementation details, and compare the performance of TRID
to that of other non-transitive algorithms 2.

3.1 Synthetic Demonstration

This section describes a simple experiment using synthetic data, where xA,xB,xC are all
one dimensional. This enables us to illustrate the situation upon the joint features spaces
associated with two cameras.

In the first experiment we assume that the data is generated as follows: we randomly
sample from a uniform distribution, each sample thus representing an "individual". These
values are the ‘clean’ xA values. The ‘clean’ xB and xC values are created by simple linear
functions: xB = a1xA+b1,xC = a2xB+b2. The xA,xB,xC values available to the learning pro-
cedure are a noisy version of these clean values. Clearly the relation between feature points
xC and their corresponding points xA are also given by a linear function which is a compo-
sition of the two functions above. See the locations of the feature pairs in Fig. 4left(a,b,c).
Disjoint sets of samples are used for training and test. The function P(YAC|xA,xC) learned
by the transitive TRID algorithm is plotted in Fig. 4left(g). Note that this plot is similar
both to the plot of the true feature pairs (Fig. 4left(c)), and to the results of direct learning
from (A,C) examples (Fig. 4left(f)). Also note that the naive algorithm fails to learn the true
transformation (Fig. 4left(e)). A CMC curve in Fig. 4left(d) shows the ReID results. We
see that TRID, which uses indirect inference, performs similarly to ICT, which uses a direct
training set.

The second experiment is similar except that the transformations from one camera to
the other are not linear and not even single valued. Rather they are implicitly defined by a
random selection of one of two linear functions; see Fig. 4right(a,b,c). Though a general
deterioration of performance is observed for this more challenging case, TRID still closely
follows the performance of the directly trained ICT (Fig. 4right(d)).

2The Matlab source code of TRID as well as of the ICT are available at:
http://www.cs.technion.ac.il/~tammya/Reidentification.html .
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3.2 Experimenting with Multi-Camera Setup

3.2.1 SAIVT-SoftBio Database

To test the TRID algorithm, we needed an annotated dataset associated with a site with
at least 3 stationary cameras. Unfortunately most common ReID benchmark datasets are
unsuitable. They are either limited to images taken by only two cameras, (VIPeR [17],
CAVIAR4REID [8]), annotated without including camera identities (iLIDs MCTS [1, 27]),
or contain images taken from a moving platform (ETHZ [12]).

We used the recently presented multi-camera surveillance database SAIVT-SoftBio [5].
It includes annotated sequences (704×576 pixels, 25 frames per second) of 150 people, each
captured by a subset of eight different indoor cameras, providing various viewing angles and
varying illumination conditions; see Fig. 5. A coarse bounding box indicating the location
of the annotated person in each frame is provided.

3.2.2 Implementation and Experimentation Details

To implement the TRID algorithm, we had to train two ICT ReID classifiers. For each ICT,
we used a training set corresponding to two cameras and a set of MTrain people. 10 frames
per person and camera were sampled. Following the descriptors recommended in [2], each
bounding box was divided into five horizontal stripes and each stripe was described by a
histogram with 10 bins for each of the color components H, S, and V. xA, xB and xC are
therefore feature vectors with d = 150 dimensions. For describing a pair, the corresponding
feature vectors were concatenated. We built all 100MTrain positive examples (same person,
different cameras), and randomly selected 30MTrain(MTrain−1) negative examples (different
people and cameras). The C and γ parameters for the RBF SVM were taken from the code
supplied by the authors of the ICT algorithm. We found that overall optimization of the
transitive ReID performance yielded similar values. All experiments were carried out with
the same parameters. We modified ICT to output the posterior conditional probabilities using
LibSVM [6] implementation and deduced P(YAB|xA,xB) and P(YBC|xB,xC).

We used eq. (7) to evaluate the matching probability, where the summation is performed
over all (MB) xB appearance descriptors available from camera B except those correspond-
ing to the test set. Here we performed a multi-shot version, where 10 images of the same
person were taken from the camera, and all 100 pairs were tested using eq. (7), followed by
averaging their estimated matching probabilities.

The main tool for evaluating the results is the Cumulative Match Characteristic (CMC)
curve, widely accepted for evaluation of ReID algorithms. For each instance in the test set,
each algorithm ranked the matching of the appearance in camera A with the appearances of
all instances in the test set in camera C. The CMC curve summarizes the statistics of the
ranks of the true matches.

We performed four transitive ReID experiments. In each experiment a different camera-
triplet played the role of cameras A,B and C. The four selected triplets were those that
included the largest number of commonly annotated subjects. We repeated the following
procedure 10 times: The annotated set was randomly divided into three subsets correspond-
ing to disjoint identities. One, containing MTest subjects, was used for testing, and the two
other equal subsets, SAB and SBC of size MTrain, were used for training the two ICT direct
ReID classifiers. The particular camera triplets and the corresponding MTrain,MTest ,MB val-
ues are: ([1 5 7], 40, 21, 102), ([3 5 7], 30, 12, 111), ([1 5 3], 30, 14, 109), ([1 3 8], 30, 15, 99).
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Figure 4: Synthetic experiments for feature space visualization. See text (Sec. 3.1).

Figure 5: Approximate camera placement and orientation in the Multi-Camera SAIVT-SoftBio
Surveillance Database. This image was taken from [5].
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Figure 6: CMC curves comparing the performance of TRID to that of other, non-transitive
algorithms, over 4 combinations of camera-triplets from the SAIVT-SoftBio dataset.
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3.2.3 Results and Comparisons

As mentioned above, and as demonstrated in Fig. 3, the best classifier can be obtained when
annotated data, SAC, specific for the (A,C) camera-pair, is available for training. The mo-
tivation behind the development of the TRID algorithm was to get close as possible to that
performance when this specific data is not available, by transitively using the non-direct
training sets SAB and SBC. Therefore, we compared TRID results to results obtained by the
following algorithms:

• ICT trained on AC data: The ICT algorithm was trained using a direct annotated
training set SAC of size Ntrain.
• Naive-ICT: The ICT algorithm was trained by the union of SAB and SBC.
• SDALF: The SDALF camera-invariant approach (that does not have a training phase).

We used the original SDALF multiple-shot code3. As advised by the SDALF authors,
we used a background subtraction pre-processing step to obtain the people’s silhou-
ettes, which included the subtraction of a background image (supplied with the dataset
for each camera), followed by low pass filtering and thresholding4.

Fig. 6 presents the results for the 4 combinations of camera-triplets. The four cam-
era triplets represent a variety of possible inter-camera relations in a multi-camera system
(Fig. 5). The most significant performance gap reduction occurred for [A B C] = [3 5 7]
(Fig. 6(a)), where TRID performed almost as well as the reference ICT trained on AC data.
Here, cameras A and C were located far away from each other and associated with signifi-
cantly different appearances due to different illumination conditions and background. Cam-
era B was located just in the middle, and seems to provide a good transitive path. It seems
that when either the A,B or the B,C views are similar (Fig. 6(d)), the advantage of the TRID
over the naive approach is smaller. Overall, the results show that TRID performed better than
the camera invariant method (SDALF), with notably improved performance over the naive
ICT method.

4 Discussion
ReID benefits from training with corresponding appearance-pairs captured by specific cam-
eras pairs, as the background, illumination, resolution and pose are camera dependent (Fig. 2).
Nevertheless, the practical difficulty in collecting such data sets is a limitation. In this pa-
per we proposed a new approach for reducing this limitation: collecting data only from a
small subset of the camera pairs, and using transitivity to improve ReID performance for all
camera pairs. The transitive inference ReID algorithm, denoted TRID, is based on statisti-
cal modeling. We demonstrate its principles on simple low dimensional data and then show
that it indeed improves ReID performance on camera pairs for which annotated pairs are not
available. Moreover, the accuracy of the TRID is superior to that of a state-of-the-art camera
invariant, which used a fixed similarity measure. It is also more accurate than a method that
makes more simplistic use of training sets associated with other camera-pairs. The TRID
algorithm is in fact a general framework that may be combined with different probabilistic
classifiers (not necessarily ICT) and of course different features.

3The original SDALF code is available at: http://www.lorisbazzani.info/code-datasets/sdalf-descriptor .
4We have also tried using binary masks supplied with the dataset, and got similar results.
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A common requirement in camera systems is to add a new camera to a set of N previously
installed cameras. Camera specific ReID requires in this case the data be collected from N
camera pairs. With the proposed transitive approach, collecting data for only one pair is
required, which is clearly more practical.

To the best of our knowledge, this work is not only the first approach to transitivity in
ReID but also, more generally, transitivity in domain adaptation. In our future work we in-
tend to test the TRID algorithm on other domain adaptation tasks, and to examine alternative
transitive approaches. One direction for the latter would be to represent the direct ReID
classifiers using two explicit transformations and to combine them by function composition.
While the transitive composition is straightforward in this case, representing the transforma-
tion by single valued function seems inadequate due to the non-unique appearance of the
same object in the same camera.

Transitive use of indirect training sets, as proposed here, can be applied to strengthen
direct learning, when the set of direct annotated pairs set is small (but not empty). Many
interesting topics arise when trying to extend the transitive approach from camera-triplets to
larger camera sets. We intend to study the recursive TRID application for obtaining ReID
estimates for all camera pairs, to study this estimation with multiple paths, to study the
optimal topology, and to analyze the cumulative error.
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