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Abstract

In spite of significant advances in Shape from Shading (SfS) over the last years, it
is still a challenging task to design SfS approaches that are flexible enough to handle a
wide range of input scenes. In this paper, we address this lack of flexibility by proposing
a novel model that extends the range of possible applications. To this end, we consider
the class of modern perspective SfS models formulated via partial differential equations
(PDEs). By combining a recent spherical surface parametrisation with the advanced
non-Lambertian Oren-Nayar reflectance model, we obtain a robust approach that allows
to deal with an arbitrary position of the light source while being able to handle rough
surfaces and thus more realistic objects at the same time. To our knowledge, the result-
ing model is currently the most advanced and most flexible approach in the literature on
PDE-based perspective SfS. Apart from deriving our model, we also show how the cor-
responding set of sophisticated Hamilton-Jacobi equations can be efficiently solved by
a specifically tailored fast marching scheme. Experiments with medical real-world data
demonstrate that our model works in practice and that is offers the desired flexibility.

1 Introduction
Shape from Shading (SfS) is defined as inferring the shape of an object depicted in a single
input image given only the light reflectance and illumination in the scene. It is a classic task
in computer vision and was pioneered by Horn [8, 9] using partial differential equations
(PDEs), see [6, 27] for reviews of the field. Since then, there has been enormous progress
in the area of SfS. In particular, the appropriate modelling of light reflectance and scene
illumination has played a key role in the design of successful SfS approaches.

With respect to the light reflectance, the classical orthographic model of Horn [8] based
on Lambertian surfaces was soon replaced by advanced non-Lambertian reflectance models
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that offer an improved capability to handle realistic scenarios; see e.g. [3, 19]. In this context,
the reflectance model of Oren-Nayar turned out to be particularly useful [13, 15, 16]. It
is a general model for diffuse reflectance and has been studied in detail in the frameworks
concerning orthographic SfS [19]. Relying on perspective instead of orthographic projection,
a different class of modern SfS approaches has emerged in the last years [12], most of them
formulated again in terms of PDEs [17, 22, 23]. By assuming a Lambertian surface and
the illumination given by a point light source located at the optical centre of the camera,
they feature many well-posedness properties in contrast to their orthographic counterparts.
In particular, the quadratic light fall-off due to inverse square law turned out to be very
useful in this context [4, 18]. Recently, such perspective SfS models with the light source
located at the optical centre of the camera have been extended to non-Lambertian reflectance
models [2, 24] such as the aforementioned Oren-Nayar model [2]. This model has also been
investigated in [10] for use with the highly efficient fast marching (FM) method [21].

Turning to more general illumination scenarios, there have been recent works on per-
spective SfS with Lambertian reflectance for a point light source not located at the optical
centre. While Wu et al. [26] presented a multi-image optimisation framework, Galliani et
al. [7] proposed a PDE-based approach for a single input image that leads to an efficient
FM implementation. However, no advanced non-Lambertian reflectance models have been
employed in the context of general illumination settings so far.

Summarising, in the previous work on perspective SfS, approaches for non-Lambertian
surfaces as well as for point light sources not co-located with the projection centre have
only been considered individually. This shows that it is an extremely challenging task to
relax the original SfS setup. In particular, there have been no attempts so far to combine a
non-Lambertian reflectance model with a general illumination setup – even though, from an
application viewpoint, the framework should evidently be as flexible as possible.

In the current paper, we advance the field by successfully merging the aforementioned
two paths of research. (i) As in the work of Galliani et al. [7] we consider the use of a
spherical coordinate system centred at the point light source. (ii) Instead of employing a
simple Lambertian reflectance model, we formulate a new brightness equation based on the
advanced reflectance model of Oren and Nayar. The resulting approach is a sophisticated
PDE belonging to the class of Hamilton-Jacobi equations (HJEs) where the solution has to
be understood in a viscosity sense, cf. [5, 11, 18, 20]. Apart from creating a very general
and flexible approach, setting up our model in this way offers a third advantage: (iii) since
for (advanced) diffuse reflectance models the brightest points correspond approximately to
local minima of the depth [19], it allows us to extend the efficient FM algorithm proposed
in [7] to our model – although our HJEs are significantly more complex. Experiments with
medical real-world input images from endoscopy allow us to verify the useful properties of
our approach, see e.g. [23, 25] for a similar application of SfS.

Our paper is organised as follows. First, we briefly recall the SfS setting in spherical
coordinates and the Oren-Nayar reflectance model that serves as basis for our approach.
Then, we proceed with the derivation of our new model and comment on its algorithmic
realisation. After a presentation of computational results, we finally conclude our work.

2 Perspective SfS Based on Spherical Coordinates
While most approaches in the SfS literature are still based on the assumption that the light
source is located at the optical centre of the camera, we follow Galliani et al. [7] and consider
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a general setup in which the light source is allowed to be located anywhere in the scene. The
corresponding geometry is depicted in Fig. 1. It is based on a spherical coordinate system
whose origin has been positioned at the location of the light source.

The main idea is to represent the Cartesian vector r =
−→
LS, i.e. the distance from the light

source to the surface, via two angles θ and ϕ , respectively, as well as a radius r:

r = Rx3 (θ) Rx2 (ϕ)

 0
0
r

=

 cosθ cosϕ −sinθ cosθ sinϕ

sinθ cosϕ cosθ sinθ sinϕ

−sinϕ 0 cosϕ


 0

0
r

 . (1)

Here, the two matrices Rx3 (θ) and Rx2 (ϕ) represent rotations about the x3- and x2-axis,
respectively. The corresponding orthonormal basis is then given by

eϕ =

 cosϕ cosθ

cosϕ sinθ

−sinϕ

 , eθ =

 −sinθ

cosθ

0

 , er =

 sinϕ cosθ

sinϕ sinθ

cosϕ

 , (2)

where

ϕ = arccos
(

r3/
√

r2
1 + r2

2 + r2
3

)
and θ = arctan(r2/r1) . (3)
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Figure 1: General SfS setup with arbitrary position of the light source. Adapted from [7].
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In this basis defined by spherical coordinates, the position vector from the light source to a
surface point can be compactly written as:[

r1 r2 r3
]>

=: r := r er with r =
√

r2
1 + r2

2 + r2
3 . (4)

Having parametrised the unknown surface in spherical coordinates, we now have to compute
the surface normal for each pixel of the input image. This can be done by first determining
the vectors defining the tangent plane – these vectors are given by the derivatives of the
surface with respect to the two directions orthogonal to r, namely ϕ and θ – and then by
computing the cross product to obtain the corresponding normal vector. Using the definition
of r from (4), the surface normal vector can be determined as

n =
∂ (rer)

∂θ
× ∂ (rer)

∂ϕ
= r

∂ r
∂θ

(
er×

∂ er

∂ϕ

)
+ r

∂ r
∂ϕ

(
∂ er

∂θ
× er

)
+ r2

(
∂ er

∂θ
× ∂ er

∂ϕ

)
. (5)

By noting from (2) that ∂ er
∂ϕ

= eϕ and ∂ er
∂θ

= sinϕ eθ , since (eϕ ,eθ ,er) constitutes a right-
handed coordinate system, we finally obtain

n = r
∂ r
∂θ

eθ + r sinϕ
∂ r
∂ϕ

eϕ − r2 sinϕ er . (6)

This information is required later on in the reflectance model to establish the connection
between the known image brightness and the unknown local orientation of the surface.

3 Perspective Oren-Nayar SfS Brightness Equation
After we have discussed a suitable parametrisation of the object surface as well as the surface
normal, let us now explain the Oren-Nayar reflectance model. In contrast to the standard
Lambertian case that assumes the object surface to be ideally diffuse, the advanced Oren-
Nayar model [13, 14, 15, 16] explicitly allows to handle general rough surfaces. The idea of
this model is to represent a rough surface as an aggregation of V-shaped cavities, each with
Lambertian reflectance properties. Assuming the slopes of these cavities to be Gaussian
distributed, the roughness of a surface can be characterised by a single parameter, namely
the standard deviation σ of its slope distribution.

For determining the irradiance, we consider additionally the inverse square law for the
light fall-off. Thus, we obtain the following brightness equation for the Oren-Nayar model
[2, 14]:

I(x)=
1
r2 cos(θi) (A+Bsin(α) tan(β )max[0,cos(ϕi−ϕr)]) , (7)

where the two non-negative terms

A = 1−0.5σ
2 (

σ
2 +0.33

)−1
and B = 0.45σ

2 (
σ

2 +0.09
)−1

(8)

depend on the statistics of the cavities via the roughness parameter σ . In this context, θi
represents the angle between the unit surface normal N and the light source direction L, θr
stands for the angle between the unit surface normal N and the camera direction V, ϕi is the
angle between the projection of the light source direction L and the x1 axis onto the (x1,x2)-
plane, ϕr denotes the angle between the projection of the camera direction V and the x1 axis
onto the (x1,x2)-plane, and the two variables α = max [θi,θr], β = min [θi,θr] stand for the
maximum and minimum of the angles θi and θr, respectively.
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4 Perspective Oren-Nayar SfS in Spherical Coordinates
In order to derive the nonlinear HJEs that describe our new model, we have to formulate the
brightness equation of the Oren-Nayar reflectance model in (7) using the parametrisation in
terms of spherical coordinates that we derived in Section 2. As a first step towards this goal,
we have to determine the direction L of the light source and the viewing direction V of the
camera. Following Fig. 1, these two directions can be computed as

L =−er and V =
−→
SC =

−→
LC−−→LS = (v1− r)er + v2 eϕ + v3 eθ , (9)

where

v1 =
√

c2
1 + c2

2 + c2
3 , v2 = arccos

(
−c3/

√
c2

1 + c2
2 + c2

3

)
, v3 = arctan(c2/c1) . (10)

Knowing the surface normal n from Eq. (6) as well as the light direction L and the viewing
direction V, we can then reformulate all trigonometric expressions occurring in the Oren-
Nayar brightness equation (7) in terms of spherical coordinates. Using the relation

∇r := ∇(θ ,ϕ)r =
1
r

(
∂ r
∂ϕ

)
eϕ +

1
r sinϕ

(
∂ r
∂θ

)
eθ , (11)

yields

cos(θi) = N ·L =
n
|n| ·L =

(
|∇r|2 +1

)−1/2
, (12)

cos(θr) = N ·V =

(
1

r sinϕ

∂ r
∂θ

v3 +
1
r

∂ r
∂ϕ

v2 + r− v1

)(
|∇r|2 +1

)−1/2
, (13)

with sin(θi) =
√

1− cos2(θi) and sin(θr) =
√

1− cos2(θr) which, in particular, allows us to
rewrite sin(α) and tan(β ). What still remains to be computed is the expression cos(ϕi−ϕr).
To this end, we calculate the projections of the directions L and V onto the (x1,x2)-plane.
This is realised by setting ϕ = π

2 and, consequently, by reducing v1 and r defined in (10)
and (4) to their first two components. Defining these projections of L and V as l̂ and v̂,
respectively, we obtain

cos(ϕi−ϕr) = l̂ · v̂ =
√

r2
1 + r2

2−
√

c2
1 + c2

2 . (14)

Finally, we are in the position to rewrite Eq. (7) entirely in spherical coordinates. However,
since there are several min and max operators involved, we have to distinguish four different
cases. These cases are given by Eqs. (15)–(18). For each case we have listed the corre-
sponding implications, the resulting brightness equation as well as the HJE that we finally
have to solve. While Case 4 resembles the single Lambertian PDE in [7], the HJEs for the
other cases are significantly more complex. This makes explicit that our general SfS ap-
proach with Oren-Nayar reflectance model is substantially more challenging than previous
approaches based on the Lambertian assumption. Moreover, please note that Case 3 is actu-
ally a special case of Case 1. However, since this case exactly describes the standard setting,
where the light source is located at the optical centre of the camera, we decided to list it
separately. Finally, we would like to mention that the angle between the light direction L
and the viewing direction V cannot be larger or equal to π . This, however, is evident, since
otherwise we cannot project these vectors onto the (x1,x2)-plane.
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Case 1: θi ≥ θr and (ϕi−ϕr) ∈ [0, π

2 )∪ ( 3
2 π,2π]

(15)1. Implication: max[0,cos(ϕi−ϕr)] = cos(ϕi−ϕr)

2. Brightness equation: I(x) =
1
r2 cos(θi)

(
A+Bcos(ϕi−ϕr)sin(θi)

sin(θr)

cos(θr)

)
3. Hamilton-Jacobi equation:

r2I− A√
|∇r|2+1

− B(l̂·v̂)|∇r|
|∇r|2+1

√
|∇r|2+1−

(
1

r sinϕ

∂ r
∂θ

v3+
1
r

∂ r
∂ϕ

v2+r−v1

)2

(
1

r sinϕ

∂ r
∂θ

v3 +
1
r

∂ r
∂ϕ

v2 + r− v1

) = 0

Case 2: θi < θr and (ϕi−ϕr) ∈ [0, π

2 )∪ ( 3
2 π,2π]

(16)1. Implication: max[0,cos(ϕi−ϕr)] = cos(ϕi−ϕr)

2. Brightness equation: I(x) =
1
r2 cos(θi)

(
A+Bcos(ϕi−ϕr)sin(θr)

sin(θi)

cos(θi)

)
3. Hamilton-Jacobi equation:

r2I− A√
|∇r|2+1

− B(l̂·v̂)|∇r|
|∇r|2+1

√
|∇r|2+1−

(
1

r sinϕ

∂ r
∂θ

v3+
1
r

∂ r
∂ϕ

v2+r−v1

)2
= 0

Case 3: θi = θr and ϕi = ϕr

(17)1. Implications: θ := θi = θr = α = β and max[0,cos(ϕi−ϕr)] = 1

2. Brightness equation: I(x) =
1
r2 cos(θ)

(
A+B

sin(θ 2)

cos(θ)

)
3. Hamilton-Jacobi equation: r2I(|∇r|2 +1)−A

√
|∇r|2 +1−B |∇r|2 = 0

Case 4: For any θi,θr, and (ϕi−ϕr) ∈ [π

2 ,
3
2 π]

(18)1. Implication: max[0,cos(ϕi−ϕr)] = 0

2. Brightness equation: I(x) =
1
r2 A cos(θi)

3. Hamilton-Jacobi equation: I
√
|∇r|2 +1− A

r2 = 0
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5 Fast Marching Solver
After we have derived the brightness equation for the Oren-Nayar reflection model with
general position of the light source, let us now discuss how we can solve the resulting set of
HJEs for the unknown radial distance r. In order to allow for an efficient computation, we
rely on a variant of the fast marching (FM) schemes which are among the fastest solvers for
PDEs available in the literature [21]. Such schemes start from critical points, i.e. points that
are local minima of the depth, and then propagate the solution to the remaining points on the
surface. Thereby, at each grid point, the corresponding nonlinear PDE from Eq. (15)–(18)
has to be solved iteratively for the unknown radial distance. Since our HJEs are formulated in
a spherical coordinate system that is usually not centred at the camera position, the location
where the radiance data I has to be evaluated depends on r. This, however, prevents the
application of standard FM schemes, since they assume I not to change during the iterations.

Recently, Galliani et al. [7] proposed a specifically adapted variant of FM for spherical
coordinates. Although their SfS model is restricted to the Lambertian case and the corre-
sponding single HJE is significantly simpler than our set of HJEs, we can still make use of
the basic strategy of their approach:

(i) In a first step, we identify critical points on the surface based on their brightness
values. Since such points denote local minima with respect to their distance to the light
source, we know that ∇r = 0. This allows us to solve the set of HJEs at those locations
locally for the radial depth r, i.e. without considering information from neighbouring pixels.
Solving for r can either be done iteratively (Case 1 and 2) or directly (Case 3 and 4).

(ii) After computing the depth values at critical points, we propagate the information to
other points in terms of θ and ϕ by sequentially updating the depth values at neighbouring
locations via solving the corresponding HJE there. As proposed in [7], we apply the iterative
update strategy from [24] making use of the regula falsi method that has been originally em-
ployed in the context of nonlinear HJEs in Euclidean coordinates. This requires to discretise
our HJEs for which we use a standard upwind scheme as described in [20]. Moreover, since
x1 and x2 depend on the radial depth r, we have to update the sample location and thus the
value of I(x1(θ ,ϕ,r),x2(θ ,ϕ,r)) at each iteration within our iterative framework. The sam-
pling at subpixel locations is done using bilinear interpolation. The iterations are stopped if
the residual of the equation drops below a certain threshold T . In our case, we use T =10−3.

6 Experimental Evaluation
In order to evaluate the quality and robustness of our model, we have used endoscopic images
provided in [1]. Since model parameters in SfS are in general unknown, experiments with
such real-world data are highly challenging; see e.g. [19, 23]. In particular, the position of
the camera relative to the position of the light source is typically not provided with such data
sets, since standard SfS models are restricted to the assumption that both positions coincide
(which is often not true by construction). However, in contrast to such techniques, our model
can handle scenarios where the position of the light source is actually not located at the
optical centre of the camera. Thus, for our experiments, we had to rely on a rough estimation
of the correct position by visually inspecting the images. Hence, we assumed that the light
source is located at the origin based on Fig. 1 and chose the position of the camera nearby
but not too close to the origin. Since it was already shown in [7] that a model with flexible
position of the light source can give significant advantages over a standard SfS approach, we
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focus in the following on the other two important aspects of our novel method: the visual
quality of the reconstruction as well as its robustness with respect to parameter variations.

In our first experiment, we evaluated the impact of the spherical resolution on the qual-
ity of the reconstruction. To this end, we used uniform grids in the ϕ-θ -domain with mesh
widths δϕθ = ∆ϕ = ∆θ and computed the results for different resolutions. As we can see
from Fig. 2, the reconstruction quality improves significantly when increasing the resolution,
i.e. when refining the grid. However, one should keep in mind that the actual quality is lim-
ited by the resolution of the input image which is repeatedly evaluated at sub-pixel positions
during our FM computation. Moreover, one should note that, due to choice that the light
source is at the origin of our coordinate system, the reconstruction is computed from the
viewpoint of the light source. This explains the slight shift of the reconstruction with respect
to the input image.

(a) Input image
(115×106).

(b) δϕθ = 0.025. (c) δϕθ = 0.0175. (d) δϕθ = 0.0125. (e) δϕθ = 0.0075.

Figure 2: Reconstruction of gastric antrum with σ = π

6 .

In a second experiment, we investigated the robustness of the reconstruction with respect
to the choice of the roughness parameter σ for the Oren-Nayar reflectance model. To this
end, we have used four different input images and computed the reconstructions for different
values of σ accordingly. The Figs. 3–6 show the reconstruction of the duodenum, the esoph-
agus, the papilla of Vater, and the stomach of lining, respectively. As we can see, the model
gives very reasonable results and behaves in a well-posed manner, i.e. the results are stable
and depend continuously on σ . This is very important for performing SfS computations with
real-world input images, since the correct value of σ is typically not known.

(a) Input image(211×208). (b) σ = π

6 . (c) σ = π

4 . (d) σ = π

2 .

(e) Input image
(cropped, 106×78).

(f) σ = π

6 . (g) σ = π

4 . (h) σ = π

2 .

Figure 3: Reconstruction of the duodenum δϕθ = 0.0125, grid size 504×504.



JU ET AL.: GENERALISED PERSPECTIVE SFS WITH OREN-NAYAR REFLECTANCE 9

(a) Input image (586×502). (b) σ = π

6 . (c) σ = π

4 . (d) σ = π

2 .

Figure 4: Reconstruction of the esophagus δϕθ = 0.0125, grid size 504×504.

(a) Input image (210×160). (b) σ = π

6 . (c) σ = π

4 . (d) σ = π

2 .

Figure 5: Reconstruction of the papilla of Vater δϕθ = 0.0125, grid size 504×504.

(a) Input image (80×71). (b) σ = π

6 . (c) σ = π

4 . (d) σ = π

2 .

Figure 6: Reconstruction of the stomach lining δϕθ = 0.0125, grid size 504×504.

7 Conclusion
We have presented a perspective SfS model that combines the advantage of freely select-
ing the position of the light source with the robustness of an advanced non-Lambertian
reflectance model. By considering both a general light source setup and an improved re-
flectance model, the resulting approach is one of the most advanced and flexible models in
the field. This is also validated by our experiments with medical real-world images that gave
good results. Despite of these results, we found that the relatively large number of unknown
parameters still makes conducting experiments difficult. Besides camera, reflectance and
lighting parameters that have to be roughly estimated, the spherical resolution of the result
and the iteration and threshold parameters may need some manual adjustment. This is the
price one has to pay for taking into account an advanced reflection model that leads to a set of
relatively complex PDEs. Nevertheless, we believe that the combination of advanced mod-
els for light source setup and reflectance is definitely worthwhile. However, the reflectance
model should not be more complicated than the one of Oren and Nayar. Otherwise a care-
fully controlled experimental environment is needed to achieve meaningful results; see [19].
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