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Abstract

In this paper we introduce an efficient, effective and scalable clustering method de-
noted as Replicator Graph Clustering. Our method takes measures of similarity between
pairs of data points (i. e. an affinity matrix) as input and identifies a set of clusters and
unique cluster assignments in a fully unsupervised manner, where the cluster granularity
is adaptable by a single parameter. We provide clustering results in three subsequent
steps: (a) diffusing affinities by finding personalized evolutionary stable strategies of
non-cooperative games (b) building a mutual k-nearest neighbor graph representing the
underlying manifold and (c) applying a graph based clustering strategy which identifies
the final clusters. Individual steps have low computational complexity which leads to an
efficient clustering method, scaling well with an increasing number of data points. Ex-
perimental evaluation demonstrates competitive performance to state-of-the-art in several
application fields.

1 Introduction

In this paper we address the generic problem of data clustering, which aims at identifying a
varying number of clusters and unique cluster assignments in a fully unsupervised manner.
Standard approaches like k-means or the mean shift [5] are defined for Euclidean metrics.
To overcome the shortcomings of this Euclidean assumption, researchers started to consider
the underlying similarity manifold to be able to handle non-metric data in the field of clus-
tering [25, 26]. Such manifold approaches were also considered in several other interrelated
application fields like retrieval, semi-supervised learning, non-linear dimensionality reduc-
tion and metric learning. Since our proposed clustering method is highly related to these
manifold approaches, we first give an overview of the related work in these fields.

Retrieval aims at identifying and ranking the most similar elements to a provided query
from a potentially huge database. In this field, manifold analysis is frequently used to im-
prove the retrieval performance by re-evaluating the similarities between elements in the
context of the entire database. The most popular concept for this re-evaluation is based on
diffusing the similarities considering the underlying manifold based on the random walk
principle. The random walk moves between elements of the database analyzing a transition
matrix that defines probabilities for walking from one element to another one. The probabil-
ities are fixed proportional to the provided affinities, yielding higher probabilities for making
steps between more similar elements. By repeatedly making random walk steps, similarities
are diffused on the manifold, which in turn improves the obtainable retrieval scores. Such
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diffusion processes were e.g. proposed in [2, 30, 31, 32] and in a recent paper [6] these
methods are summarized in a general diffusion framework.

Retrieval is highly related to semi-supervised learning methods, since retrieval can be
seen as an extreme case of semi-supervised learning, where the only labeled instance is
the query element. In this field the most popular methods are graph based, as e.g. semi-
supervised learning by label propagation [34], Gaussian random field models and harmonic
functions [35] and local and global consistency analysis [33].

Also the field of dimensionality reduction frequently addresses the non-linearity of data
by manifold analysis. Nonlinear reduction techniques like Isomap [28], Locally Linear Em-
bedding [23] or Laplacian eigenmaps [3] are frequently applied for non-linear embedding,
mapping the input data to different graph structures by defining a neighborhood for each
data-point in terms of a graph structure.

In metric learning, the insight is considered that the default distance in a feature space
may not be optimal. Methods in this field aim at detecting the manifold structure and ad-
ditionally the associated metric. Unsupervised examples are e.g. the probabilistic latent se-
mantic analysis [14] (pLSA) and the latent dirichlet allocation (LDA) [4].

Also state-of-the-art clustering methods like spectral clustering [18], power iteration
clustering [15] or affinity propagation [11] are highly related to the aforementioned topics.
In spectral clustering the top eigenvectors of the graph Laplacian unfold the affinity manifold
to form meaningful clusters. The cluster results are then obtained by traditional methods like
k-means in the newly obtained space. Methods in this fields mainly differ in how to normal-
ize the Graph Laplacian [10, 19, 24]. Power iteration clustering focuses on efficiency issues
of spectral approaches, and shows that by directly analyzing the principal eigenvector of the
affinity matrix, one is able to derive reasonable clusters in short computation time. All these
approaches require to manually fix the number of clusters. By contrast, in affinity propaga-
tion [11] messages (responsibilities and availabilities) are exchanged between the data points
until a high-quality set of exemplars and corresponding clusters emerge and in such a way
the number of clusters is implicitly identified. Cluster granularity is adaptable by a so-called
preference parameter.

Our goal is to combine ideas and approaches from the aforementioned fields of research
and to propose a novel unsupervised clustering method which provides results in an efficient
manner. The main idea is that we first apply a diffusion process considering the underly-
ing data manifold to overcome the shortcomings of a Euclidean assumption as e.g. used
in standard k-means clustering and to then use the diffused affinities in a provably optimal
clustering approach which analyzes an effective neighborhood graph structure (Replicator
Graph). Our proposed clustering method has several advantages:

e No restrictions (like affinities have to satisfy metric properties) on affinity matrix,
e. g. negative and asymmetric affinity matrices can be handled.

o Diffusion step improves pairwise affinities due to considering the underlying manifold.

e Returns global optimal clustering solution considering widespread cluster criterium of
high internal coherency and external incoherency.

e Automatic identification of number of clusters using a single parameter to influence
cluster granularity.

e Improved clustering quality and reduced computation time in comparison to state-of-
the-art methods.
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2 Replicator Graph Clustering

Our clustering method, denoted as Replicator Graph Clustering (RPC), belongs to the field
of pairwise or proximity-based based clustering approaches, which assume that the input is
an N x N affinity matrix A = (a;;), where each entry a;; measures the similarity between
two specific data points-to-be-clustered i and j, and we do not have a self-similarity, i. e. a;;
is 0. Please note, that this is quite different to methods centered around the notion of fea-
tures such as the standard k-means method. In our setting we have lost knowledge of the
underlying representation (features) and only have access to the provided similarities. The
goal of clustering is to uniquely assign each of the N data points to one of a set of clusters
C =(C1,Cy,...Cc), where C is an automatically found number of clusters. In such a way the
clustering result depends exclusively on the provided similarities.

Our method is divided into three subsequent steps. First, we diffuse the provided affini-
ties through the entire matrix considering the underlying manifold in a game theoretical
setting. For this, we describe in Section 2.1 an approach based on personalized evolutionary
stable strategies that represent optimally propagated affinities per data point. The updated
affinity matrix is then used to define a mutual k-nearest neighbor graph, as it is described
in Section 2.2. Finally, this graph representation is passed to a provably optimal clustering
algorithm, which identifies clusters by analyzing internal and external cluster consistency
scores. This clustering step is described in Section 2.3.

2.1 Diffusing Affinities by Game Theory

The first step of our method is to diffuse the provided affinities considering the underlying
data manifold. In such a way we lift the Euclidean assumption prevalent in many other
clustering approaches. It has been shown in [6] that such diffusion processes are able to
significantly improve retrieval performance, and we aim at exploiting this property for our
task of clustering. Our main idea is to consider each data point independently and to diffuse
the affinities in relation to the current query data point, similar as in related semi-supervised
learning or retrieval tasks. Query-specific diffusion means, that we aim at converting the
query specific similarities A; (the i-th row of the given affinity matrix A) into a new N x 1
vector representation X* by maximizing its agreement to the underlying similarity manifold
spanned by the entire affinity matrix A by

x* = argmax (xT Ax) , (1
X

which is a standard quadratic assignment problem (QAP). Any of the available QAP solvers
can be applied, and we describe replicator dynamics as an effective solver for this problem in
Section 2.1.1. The QAP is known to be NP-hard, and thus all solvers will return an arbitrary
local maximum and it is in general not possible to guarantee that the query point is in the
basin of attraction of the obtained solution. Thus, in Section 2.1.2 we introduce an adaption
for personalizing the replicator dynamics to a specific data point i, which returns a query
specific affinity vector x* containing optimally propagated affinities for the query i. Finally,
all query-specific diffused affinities stacked together build the updated affinity matrix A*,
which considers the similarity distribution on the underlying manifold.
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2.1.1 Replicator Dynamics

Replicator dynamics [27] is a popular algorithm from game theory, which is frequently ap-
plied for solving the quadratic assignment problem. Game theory in general is a tool for
predicting how players behave in strategic situations (games). Each player has a set of avail-
able actions and the obtainable reward depends on the actions played by each player. In this
paper we focus on non-cooperative, two player games, where players are in a competitive
setting. Final result of the game is an evolutionary stable strategy which is the outcome of
the evolutionary process that unfolds over time finding the best strategy. Game theoretical
approaches were recently gaining increased popularity in computer vision, e. g. for matching
image segments and points [1], for finding common spatial visual patterns in images [17],

for semi-supervised learning [7] but also for clustering [16, 22].
The dynamics are an iterative procedure, starting from a random initialization x°, which

is iteratively updated by
A (Ax');

i "xtTAx
where X’ is the assignment vector at time 7. As a necessary additional constraint x has to lie
on the simplex A defined as

@

A={xeR":x;>0 and 1"x=1}, (3)

where 1 is an N-dimensional vector of ones, i.e. Y. x; = 1. Of course, also the random
initialization vector X¢ has to lie on the simplex, and mostly a slightly perturbed version of
the barycenter of the simplex is used. Starting from x°, replicator dynamics find a solution
vector X* which is a local (!) maximum of the optimization problem shown in Equation 1
(QAP problem).

The simplex A is invariant under this formulation, which means that every trajectory
starting on the simplex will remain on the simplex. Furthermore, the score defined in Equa-
tion 1 is strictly increasing along any trajectory of the dynamics given in Equation 2. The
final solution is the evolutionary stable strategy, which is a stricter formulation of the well-
known Nash equilibrium. As it is shown in [29] the dynamics also converge in case of neg-
ative and asymmetric affinity matrices by considering a shifted matrix B = AT + oI, with
0.5 < a < 1 (guarantees unambiguous solutions) and I is the identity matrix. Please note,
that in such a way we do not have any restrictions on the affinity matrix, i. e. it can be nega-
tive and asymmetric, which is quite different from most affinity based clustering approaches
like [11, 19, 24]. For more details and convergence proofs of these dynamics see e. g. [20].

A nice property of the replicator dynamics algorithm is that it can be implemented in
a few lines of code in any programming language (Matlab Pseudo Code shown in Algo-
rithm 1).

Algorithm 1: Replicator Dynamics Code

1 random initialization of x
2 while dist < € do

3 oldy = x

4 X =X.* (A *X)

5 X = X./sum(x)

6 dist = ||x — oldy]|
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The intuition behind considering replicator dynamics for our diffusion process is as fol-
lows: the hypotheses, that the data points contribute to the score defined in Equation 1,
compete with each other. Each data point gains support from compatible points and compet-
itive pressure from all other data points during the evolutionary process. This competitive
setting reduces the number of non-zero assignments by driving inconsistent hypotheses to
extinction (i. e. making x* sparse) and by increasing the support of important data points. In
such a way affinities defined in A are diffused through the manifold.

2.1.2 Personalized Replicator Dynamics

Replicator dynamics only guarantee to find an arbitrary local maxima x*. Since our goal is
to use the dynamics to diffuse the affinities for a specific query data point i, we are interested
in finding the local maxima that has data point i in its basin of attraction, which is not
guaranteed if applying the standard dynamics using random initialization. For this reason,
instead of initializing the dynamics by a slightly perturbed version of the barycenter of the
simplex, we consider the query-specific affinities A; (the i-th row of the given affinity matrix
A) as initialization. Since, for replicator dynamics the starting vector x° has to lie on the
simplex, we have to normalize it by

L. ZAI bl

A, = 4

which ensures that A; lies on the simplex. The starting vectors x° are then fixed to the
corresponding A; vectors.

Additionally, we locally constrain the diffusion process to the S nearest neighbors (NN)
of each query point i, and in such a way not all pairs of affinities contribute to the dynamics.
For this we have to find the S-NN for each i. We then replace the corresponding row A; of
the affinity matrix A with a vector that only has values for the identified neighbors and all
other affinities are fixed to zero. This leads to a novel affinity matrix, which we denote as
Asyy. Note that this matrix is fixed for all personalized replicator dynamics steps per query,
and that these dynamics only differ in their initialization.

We then apply the evolutionary dynamics for each query i using Agyy and the corre-
sponding A; as initialization vector x” in Equation 2, which yields optimal x’* per query. In
such a way, we are finally able to derive the updated N x N affinity matrix A* as

X"
A" = : (5)
V]
where each row is the personalized local maxima obtained by the dynamics.

In general, we have to apply the dynamics for each query, and each replicator dynamics
diffusion has O (N*) memory and time complexity. Therefore in overall we would have a
complexity of O (N 3) for building the updated matrix A*. Nevertheless, as aforementioned,
we only use the S-NN in the diffusion, which reduces complexity from N3 to N S?, where
S < N. Infact as it is shown in the experimental section S can be fixed to only a fraction of N
(e. g. 3%) resulting in the same clustering quality. Our game theoretical diffusion algorithm

is summarized in Algorithm 2. As can be seen, runtime of our algorithm could potentially
be significantly decreased by parallelizing the main loop.
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Algorithm 2: Algorithm for Game Theoretical Diffusion of Affinities

Input: N x N Affinity matrix A and number of neighbors S

Output: Updated N x N Affinity matrix A*

AT =

Calculate S-nearest neighbors per query and build Agyy

fori=1toN do
Apply replicator dynamics to Agyy using A;. as initialization and obtain
evolutionary stable strategy x* (Equation 2)

w={ oy |

6 return A*

AW N =

wn

2.2 Building the Replicator Graph

Most of the methods presented in the introduction are based on representing the similarity
manifold by a graph structure, where nodes represent data points and edges define similarities
between the data points. We follow the same principle and use a graph structure (which
we denote as Replicator Graph) as underlying representation for the final clustering step
described in the next section. Obviously it is important to select a good graph representation.

Conventional nearest neighbor graphs are supposed to model the local relation between
a data point i and e. g. its k nearest neighbors (kNN) or all points within a pre-defined dis-
tances A (i, j) < € (eNN). Depending on k or &, the resulting graph is typically very sparse,
compared to a fully connected graph constructed from a dense affinity matrix A. Never-
theless, both graph structures have obvious drawbacks. The use of €-neighborhood graphs
requires data distributions on same scales which means that the data points have to form non-
elongated, tight clusters. In contrast, k nearest neighbor graphs are able to connect regions on
different scales, since only the absolute neighborhood ranking is of interest for the connec-
tion of two points. Nevertheless, a kNN graph fails to consider possible asymmetries in the
affinity matrix. Since we potentially have to deal with such asymmetries of A*, we focus on a
specific graph structure denoted as mutual kNN graph (mkNN), which is surprisingly seldom
used despite its interesting properties. The mkNN adds an additional constraint to the kNN
graph, which requires that two connected data points belong to each others k-neighborhood,
i.e. j € kNN(i) and i € kNN(). In such a way we obtain our Replicator Graph by building
the mkNN graph structure for the affinity matrix A*, which represents the underlying man-
ifold in a sparse manner, but contains all relevant affinities for our final clustering step as it
is described in the next section. The computational complexity for building the replicator
graph is O (kz N ) , where finding the set of kNN requires sorting the matrix which is possible
in linear time for k << N.

2.3 Replicator Graph Clustering

The replicator graph, as described in the previous section, represents the underlying affin-
ity manifold and constitutes the basis for our global optimal graph clustering. We propose
to cluster the obtained replicator graph according to an unsupervised segmentation method
introduced by Felzenszwalb and Huttenlocher [9]. In [9] a highly efficient segmentation
method was introduced, which uses relative dissimilarities between segments to determine
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plausible merges. It is formalized as a grouping problem on a graph, where nodes repre-
sent image pixels, edges are defined e. g. by standard 4-neighborhood and edge weights are
obtained by measuring local color similarities. Authors introduced an algorithm that prov-
ably optimizes a global grouping metric and efficiently provides unsupervised segmentation
results in O (nlogn) time, where n is the number of image pixels.

We adapt [9] to general graph structures for our unsupervised, proximity based clustering
method. We assume that we have given the Replicator Graph as described in the previous
section, where nodes represent the individual data points that we want to cluster and edges
connect nodes according to the mkNN graph with edge weights set according to the updated
affinity matrix A*. We use this graph as input to [9], which precedes by merging clusters in
decreasing order of the edge weights separating them. This is efficiently done by a variant of
a minimum spanning tree method. These iterative merging steps stop once the final clustering
is neither too fine (cluster should be merged due to high similarity) nor too coarse (cluster
should be split due to boundary evidence). In such a way the algorithm obeys the global
properties of being neither too fine nor too coarse and returns a global optimal(!) solution,
although the algorithm only makes greedy decisions. For more details on the algorithm and
proofs of the global optimality, see [9]. The computational complexity of this approach is
O (ElogE), where E is the number of edges in the graph which is directly related to number
of neighbors k considered in our replicator graph.

An important part of the algorithm is the so-called goodness function 7 (C;) of a cluster
C;, which is fixed to 7(C;) = f/|C;|, where f is a region size preference parameters. Set-
ting the parameter f defines the desired granularity of the clustering and therefore directly
influences the number of clusters in a way similar to the preference parameter of affinity
propagation clustering [11]. Nevertheless it is important to note, that the preference param-
eter f does not (!) represent a minimum cluster size. Smaller clusters are allowed, if there is
a sufficiently large difference between the clusters.

3 Experiments

Experimental evaluation is split into three main parts. In Section 3.1 we evaluate the influ-
ence of the main parameters of our method. In Section 3.2 we demonstrate the applicability
of the game theoretical diffusion step for clustering. Finally, Section 3.3 compares results
to related methods on diverse data sets. We implemented our method in Matlab and code is
provided at http://vh.icg.tugraz.at.

3.1 Parameter Evaluation

This section analyzes the influence of the parameters on clustering performance. Experi-
ments are based on a popular data set from the field of shape retrieval: MPEG-7 CE Shape-1
Part-B dataset, which consists of 70 different classes of object silhouettes, where each class
is represented by 20 instances, thus N = 1400. In order to define the 1400 x 1400 affinity
matrix A, we use the currently best performing shape matching method [12] on MPEG-7.
For evaluating the performance of a clustering method we use the wide-spread normalized
mutual information (NMI) score.

We have three main parameters to define for our clustering method: the fraction size S
for locally constraining the diffusion (influencing speed), the neighborhood size k for the
mkNN graph (influencing speed), and the clustering granularity parameter f (influencing the
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[%] of N 0.2 0.6 0.9 14 1.8 2.1 2.5 3.6 50.0

S 3 8 12 20 25 30 35 50 700
NMI-100 | 76.89 91.62 95.13 96.70 97.18 97.35 9746 9732 97.36
time [sec] | 0.99 0.81 090 131 146 1.68 198 3.04 559.05

Table 1: Analysis of influence of parameter S on the clustering quality (normalized mutual
information — NMI — the higher the better) and the runtime. Reasonable clustering perfor-
mance is already achieved by only considering a fraction of N in the diffusion (§ ~ 35 nearest
neighbors) yielding a significant speedup of factor 500.

3 4 5 7 10 15 20 25

NMI - 100 93 45 96.51 96.01 9739 9746 9746 9746 9746 97.46
time [sec] 1.86 1.87 1.89 1.90 1.93 198 204 210 214

Table 2: Analysis of influence of nearest neighbor parameter k on the clustering quality (nor-
malized mutual information — NMI — the higher the better). Optimal clustering performance
is achieved by considering values of k > 7, for higher values performance stays exactly the
same, but at increased runtime, since the complexity of clustering is O (E logE), where E is
the number of edges (directly related to k).

number of clusters). Table | analyzes the influence of the parameter S (number of nearest
neighbors to consider in the dynamics) on the obtainable clustering quality and algorithm
runtime if k is fixed to 10. As can be seen only a fraction of data points (3%) has to be
considered in the dynamics to achieve reasonable performance but within a significantly de-
creased runtime. Increasing the neighborhood size S further slightly decreases performance,
and selecting an optimal size is still open research in diffusion, see e. g. [21]. The neighbor-
hood size k does not influence the quality of the results as long as a sufficiently large number
such as k > 7 is considered as it is shown in Table 2 (for S = 35). Adapting k also has only a
minor influence on runtime.

3.2 Evaluation of Diffusion

As second experiment we demonstrate the usefulness of the game theoretical diffusion step
for clustering. Figure 1 shows the normalized mutual information (NMI) score for MPEG-7
comparing clustering results obtained by activating the replicator dynamics based diffusion
of affinities and results if directly using the input matrix (i. e. skipping the first step of our
method). As can be seen the diffusion step provides improved results independent of the
obtained number of clusters, where different cluster results were obtained by adapting the
granularity parameter f. Additionally, we show scores if replacing our diffusion scheme by
two related methods: Label Propagation (LP) [31] and LDCP [2], which are both outper-
formed by our approach.

3.3 Comparison to State-of-the-art

As final experiment we compare our clustering method on several data sets to related meth-
ods in the field of clustering. We use a k-means baseline, spectral clustering [24], affinity
propagation [11] and the recently proposed, highly efficient power iteration clustering [15]
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Figure 1: Illustration of improved performance when using the proposed replicator dynamics
based diffusion scheme. Activating the diffusion scheme leads to improved performance
independent of the number of clusters obtained.

Data | K-means | Spectral [24] | Aff. Prop.[11] | PIC[15] | Proposed

MPEG | 89.19 (1.05s) | 95.99 (3.45s) | 91.11 (13.72s) | 47.08 (1.38s) | 97.46 (2.69s)
CALT | 41.19 (2.15s) | 55.75 (1.33s) | 55.65(5.99s) | 51.01 (1.43s) | 56.40 (0.73s)
UNIP | 42.59 (0.01s) | 68.49 (0.04s) | 59.58 (0.54s) | 64.88 (0.03s) | 71.66 (0.18s)

Table 3: Comparison of clustering quality (normalized mutual information — the higher the
better) and runtime (in seconds) for all methods compared on several data sets.

for comparison. Code was taken from the corresponding author’s webpages. Since spec-
tral clustering and power iteration clustering apply k-means on the obtained embedding as
final step, we passed the correct number of clusters as additional parameter for these meth-
ods, whereas for affinity propagation and our method, the preference value f was adapted to
always yield exactly (!) the same number of clusters.

We analyze three different data sets: (1) MPEG-7 CE Shape-1 Part-B (shape silhouettes,
1400 instances, 70 classes) as in the previous section, (2) CALTECH 101 (object categories,
1010 instances, 101 clusters) [8] and (3) UNIPEN (handwritten letters, 250 instances, 5
classes) [13]. We fixed the parameters for our method to § = 30 and K = 10. Table 3 shows
results of the Normalized Mutual Information (NMI) score and runtimes on these data sets
for all of the 5 compared methods. As can be seen our proposed method provides compet-
itive clustering results on all data sets in short computation time, e. g. being significantly
faster than affinity propagation [11]. In contrast, the power iteration clustering is quite fast,
nevertheless fails if the number of classes gets too high, since it finally applies k-means to a
simple one-dimensional vector. Huge improvements against the k-means baseline (+8.27%
on MPEG-7, +15.21% on CALTECH 101 and +29.07% on UNIPEN) demonstrate the im-
portance of considering the underlying manifold for clustering, which is implicitly done by
the diffusion scheme.
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4 Conclusion

In this paper we proposed a fully unsupervised, proximity-based clustering method denoted
as Replicator Graph Clustering. Our method combines an effective diffusion process, based
on iteratively approaching evolutionary stable strategies, with a provably optimal clustering
step. We furthermore described an approach to significantly decrease computation time by
considering only nearest neighbors in the dynamics, which nevertheless does not adversely
affect clustering quality. In such a way effective clustering results are obtained in low compu-
tation time. Experiments first demonstrate that the diffusion scheme improves clustering due
to considering the underlying data manifold and that competitive results to related clustering
methods are obtainable on diverse clustering data sets.
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