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Detecting in-focus regions in a low depth-of-field (DoF) image has
important applications in scene understanding, object-based coding, im-
age quality assessment and depth estimation because such regions may
indicate semantically meaningful objects. Most early approaches consid-
er image sharpness as an image in-focus metric and attempt to measure
in-focus directly from high-frequency components, e.g. edges [2] and
patch variances [1]. However, in-focus edges with low intensity magni-
tudes and defocus edges with high intensity magnitudes may give similar
responses. Thus, recent work formulates in-focus detection either as a
learning task [5] or an optimization problem [7].

Here, we introduce an efficient in-focus measure to estimate the de-
gree of in-focus within an image region and a graph segmentation based
regularization method to accurately align the feature responses on the un-
derlying image structure.

A harmonic mean of variances, which we call as harmonic variance,
is computed from the statistical properties of the given image in its band-
pass filtered versions. To find the bandpass responses, we apply the 2D
discrete cosine transform (DCT) on image patches, e.g. in 8×8 windows,
with a fixed number of bands M = 64. These DCT transform responses
are bandpass filtered individually and then aggregated into the bandpass
filtered image Im for the DCT channel m.

Note that, even if most of the variances σ2
m of a defocus region may

have small values, one large variance estimate in a low-frequency channel,
which is quite common for textured yet blurry regions, could still make
the arithmetic mean of the variances larger than that of in-focus regions,
causing the defocus region to be falsely considered as in-focus. A compe-
tent in-focus measure should not be sensitive to such outliers. For positive
data sets containing at least one pair of unequal values, the harmonic mean
is always the smallest of the three means, while the arithmetic mean is the
greatest of the three and the geometric mean is in between.

Thus, we use the harmonic mean instead of other possible first order
statistics in order to combine the variances σ2

m of different bands. For a
given patch centered at x, we define the in-focus measure as the harmonic
mean of the variances σ2
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omitting the variance of the zero-frequency channel σ2
0 . This in-focus

measure is also closely related to the noise analysis of natural images [6]
by a factor α as:

σ
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where σ2
η is the image noise variance and
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where κ and κm are the kurtosis values of the original image I and band-
pass filtered image Im. In other words, for an in-focus image, the harmonic
mean can be used to determine local image noise variances.

We incorporate the harmonic variance measure within a robust seg-
mentation framework based on a graph Laplacian spectrum constraint [4]
to segment in-focus regions in low DoF images.

We compute a graph Laplacian matrix L [3] from the image I. The
graph Laplacian spectrum constraint L f = 0 enforces the image structure
on the prior information, that is the harmonic variance results, in the da-
ta fidelity term ‖ f − h‖2. With this constraint, the optimal f lies in the
null-space of L. In other words, f is constant within each connected com-
ponent of the corresponding graph G. Therefore, we define the in-focus
segmentation as a least-squares constrained optimization problem as

min
f
‖ f −h‖2 s.t. L f = 0. (4)

Figure 1: Top-row: original image and its harmonic variance features h. Bottom-
row: the optimized in-focus likelihood scores f of h and the final segmentation.
Unlike the conventional features, the harmonic variance is an accurate indicator
of in-focus regions (please, see the full paper for comparisons). In addition, our
method fits the harmonic score responses to the underlying image structure.

The residual δ (x) = | f − h| has many spatially continuous outliers. The
least-squares fidelity team with equal weights can distort the final estimate
in case of outliers. We adapt a robust functional instead of the least-
squares

min
f

ρ( f −h)+β‖L f‖2 , (5)

where ρ is the robust function. We use the Huber function

ρ(x) =
{

1 if δ (x)< ε

ε/δ (x) if δ (x)≥ ε
(6)

for the reason that it is a parabola in the vicinity of 0 and increases linearly
when δ is large. Thus, the effects of large outliers can be eliminated
significantly. When written in a matrix form, the data fidelity term can be
simplified as ‖W ( f −h)‖2 where W represents the Huber weight function.
As a result, the problem Eq.(5) can be solved efficiently in an iterative
least-squares approach. At each iteration, the optimal f is updated as

f = (βL>L+W )−1Wh . (7)

In conclusion, the effectiveness of this novel harmonic variance mea-
sure coupled with the image structure alignment capability of the graph
Laplacian spectrum based robust optimization framework generates high-
ly accurate segmentation results of in-focus regions in low DoF images.
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