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An indoor navigating agent needs to efficiently understand the geo-
metric structure of its local environment in order to act. A common scene
understanding approach is to generate a set of hypotheses about the ge-
ometric structure of the indoor environment and then test the hypotheses
to select the one with the highest rank, from a single image [1, 4, 5, 6] or
from a continuous stream of images (e.g. a video) [8, 9]. These methods
simply detect features (e.g. lines [1, 4, 6], points [8, 9], and edges [6]) that
are easily detectable for evaluating the hypotheses. In fact, some of the
most informative features to discriminate the hypotheses may not be ex-
tracted if features are detected by fixed thresholds, since the informative
regions may not have high image contrasts for features to be detected.

This paper demonstrates that by focusing attention on features in the
informative regions, we can evaluate the hypotheses more efficiently. The
idea of focusing on informative regions of the image space is inspired by
the idea of saliency detection [2, 3, 7]. While these works typically define
saliency regions based on image and motion properties of the pixels in the
images [2, 3] or based on human fixations [7], our informative regions are
defined in terms of the agent’s own state of knowledge, the current set of
hypotheses about the geometric structure of the indoor environment.

Given a set M of hypotheses, we divide the image into regions based
on the expected information gain that each feature provides, which we
call informativeness (Figure 1). We define the informativeness I(p j,M)∈
[0,1] of point p j, measuring its discriminating power among the set M as,

I(p j,M) = log(|M|)−H(Mu|p j), (1)

where H(Mu|p j) is the expected entropy of the set M with uniform prior.

Figure 1: Example of the informative regions. (Best viewed in color.)
(Left) The current set of hypotheses. (Middle) The gray-scale value re-
flects the informativeness I(p j,M) ∈ [0,1] of each pixel p j in the current
image based on the four hypotheses. Since the hypotheses are qualita-
tively distinctive, the image divides into several regions based on the in-
formativeness. (Right) Since precisely computing the exact boundary of
the informative regions can be computationally expensive, we use a set of
axis-aligned boxes to approximate these regions. All points within each
box are set to the same I(p j,M) > 0 value (maximum informativeness
among all pixels within the box), and any point that is outside the boxes
has I(p j,M) = 0.

To evaluate the set M of hypotheses, existing approaches extract high-
contrast features across the entire image. However, efforts are being
wasted when features with high image contrasts lie within uninforma-
tive regions, and opportunities may be missed when features in informa-
tive regions have relatively low image contrasts. Thus, in this paper, we
adjust the threshold for extracting features in the informative regions to
allow features to be extracted even if they have lower image contrasts.
Moreover, when evaluating the hypotheses, instead of using all extracted
features, we only use features that are capable of discriminating among
the current set of hypotheses to reduce the computational cost.

We selected a Bayesian filter-based approach to scene understanding
[8] to evaluate our attention focusing method. We compare the effective-
ness of our method with the baseline [8] by computing the informative-
ness of the selected features at each frame. Figure 2 shows that with the
same set of hypotheses, our method selects more features that are capable
of discriminating the hypotheses and wastes no effort on features that are
uninformative. In addition, our experimental results demonstrate that this
bias of the search toward the most informative point features helps the

Figure 2: Examples of our attention focusing method. (Best viewed in
color.) Each row is a snapshot from our experiment. The first column is
the set of hypotheses M at that frame. The second column visualizes the
informative point features (green) Pa that are selected by our method to
evaluate the hypotheses. The third column shows the point features (red)
from the baseline set Pb, which are simply point features with high cor-
ner responses. For the second and the third column, only the informative
regions are shown, and non-informative regions are shown in white. The
last column is a comparison of the informativeness of using each feature
set. Our proposed attention focusing method I(Pa,M) is shown in green
solid lines, and the baseline method I(Pb,M) is shown in red dashed lines.
Our method achieves higher informativeness because more point features
that are capable of discriminating the hypotheses are tracked. In general,
there are 1.5 to 6.5 times more point features that are capable of discrim-
inating the hypotheses in the informative set Pa than in Pb. In some ex-
treme cases (second row), the baseline set Pb does not contain any features
that are capable of discriminating the hypotheses so the informativeness
I(Pb,M) at those frames are zero.

Bayesian filter to converge to a single hypothesis more efficiently, with-
out loss of accuracy. About 50% of the time, our method converges to a
single hypothesis while only about 30% of the time, the baseline method
converges to a single hypothesis.

Our main contribution is to show that by using informativeness to
control the process of feature acquisition, we can use computational re-
sources more efficiently to discriminate among hypothesized interpreta-
tions of a visual scene, with no loss of accuracy. Informativeness al-
lows our method to focus computational resources on regions in the scene
where different hypotheses make different predictions. We demonstrate
our method using the problem of real-time scene understanding for a mo-
bile agent (e.g. [8, 9]), but it is equally applicable to other scene under-
standing problems (e.g. [1, 4, 5, 6]). Our experimental results demon-
strate that this bias of search towards informative features provides more
discriminating power among the hypotheses than simply using features
that are easy to detect, with no loss of accuracy.
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