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Abstract

Current deformable part models such as the ones introduced by Felzenszwalb et al.
let the parts deform only at a fixed predetermined scale relative to that of the root of the
models (typically at twice the resolution). They do so because it allows them to find the
optimal placement of each part efficiently, using a fast 2D distance transform algorithm.

We demonstrate in this paper that if one settles for approximately optimal placements,
it is possible to efficiently deform the parts across scales as well. Allowing parts to move
in 3D increases the expressivity of the models, allowing them to compensate for a wider
class of deformations, and might approximate an increase in the scanning resolution. As
the number of parameters remains (nearly) constant, overfitting is not a problem.

1 Introduction

The Deformable Part Model (DPM) of Felzenszwalb et al. [7, 11] and its many variants,
some of which are presented in §2, are considered one of the current state-of-the-art object
detection methods. Indeed they are the winners of many Pascal VOC detection challenges [5,
6], and are the current top-performer on many other detection tasks, e.g. pedestrian detection
[11], bird recognition [18], face detection and feature localization [23], or articulated pose
recognition [19].

DPMs are discriminative sliding-window classifiers, predicting a score related to the
presence or absence of an object for each possible position and scale of an image. These
scores are computed by taking the sum of the inner products between the model’s filters
and the corresponding sub-windows of the image, placing each filter at an “optimal” image
location. The strength of DPMs resides in their ability to represent an exponential number
of templates by letting the part filters float around their reference location, and in finding
the optimal part configuration at every possible root position efficiently using a generalized
distance transform [8].

The bulk of their computational cost comes from the numerous convolutions they need
to do between every feature pyramid levels and every part filters, each followed by a dis-
tance transform. Both can be computed in time linear with the area of the pyramid levels
and take roughly the same amount of time [3]. Standard DPMs restrict the parts to move
at a single scale, a limitation imposed by the distance transform as explained in §3.3. Our
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extension removes this limitation without increasing the number of convolutions or distance
transforms, by sacrificing the guarantee of the optimality of the part placements. Its cost was
empirically found to be similar to that of a second distance transform, and it is easy to inte-
grate into existing detection systems, the models staying the same except for the additional
3D components to the deformation cost vectors.

After a more formal presentation of DPMs in §3.1, we introduce our 3D model in §3.2,
and our approximation to the generalized distance transform in §3.3. In §4 we present re-
sults showing an average relative accuracy improvement of 15% compared to standard mod-
els, and show that our approximation does not lead to any significant loss of performance
by comparing against an exact baseline searching for the optimal part locations exhaus-
tively. It is available under the GPL open source license at http://www.idiap.ch/
scientific-research/resources.

2 Related Works

Many recent works build upon the original DPM of Felzenszwalb et al. and try to improve
either its detection performance or its computational complexity. As an instance of a work
belonging to the first category, [21] augments the HOG features usually used with LBP ones,
in order to be sensitive to not only edges but also textures, which results in a 10% gain in aver-
age relative accuracy. Trying to simplify the original star-based part model, [22] represents
objects by a mixture of hierarchical tree models organized on a 2D grid, where the nodes
represent object parts, and solves the non-convex optimization problem using the Concave-
Convex Computational Procedure (CCCP) [20]. Arguing that the most important component
of DPMs is the mixture one, [2] proposes to improve their initialization by switching from
aspect-ratio to appearance clustering, and reports that a mixture of monolithic models clus-
tered by appearance can compete with DPMs.

A selection of the most relevant works aiming at making DPMs faster include [10], which
sees the parts as classifiers in a cascade, and splits the detection process into two passes. The
first pass evaluates the detector on a low-dimensional feature space (reduced from 32 HOG
features to 5 using PCA), and the second pass with all the features. Making use of the linear-
ity of the Fourier transform, [3] shows how to accelerate by one order of magnitude the many
convolutions between the feature pyramid and the part filters, exactly and without the need to
tune any parameter. Expressing the part filters as a sparse linear combination of a dictionary,
[17] can also obtain large speedups when detecting multiple objects simultaneously, since in
this case the dictionary typically can be made much smaller than the total number of filters
while not sacrificing too much accuracy, as many objects share visually similar parts, e.g.
wheels, limbs, corners, efc. Finally [12] applies the dual-tree branch and bound algorithm
[14] to more efficiently optimize the objective function of [10], and rapidly approximates
the inner products between filters and HOG features by quantizing the HOG cells onto a
codebook and replacing their inner products with lookups of precomputed scores in [13].

Another line of work [15, 16] aims at bridging the gap between 2D image positions
and 3D real-world ones by learning 3D part deformation models. This is accomplished by
learning a mixture model where each mixture component deals explicitly with a particular
viewpoint, each trained using both real and 3D synthesized images. Even though it enables
the model to map 2D part locations to 3D ones, the authors did not attempt to move the parts
across scales, thus making their work completely orthogonal to ours.
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3 Method

Standard DPMs comprise a root and several parts, all detected independently by a linear
filter, and organized in a hierarchical structure. In the rest of this paper we restrict ourselves
without loss of generality to star structures, for ease of notation. We also ignore the additional
complexity introduced by the mixture over the models, since it is orthogonal to the method
presented here.

3.1 Standard Models

Let H be a feature pyramid and p = (x, y, z) specify a 2D position (x, y) in the z-th level of
the pyramid. Let ¢ (p) denote the vector obtained by concatenating the feature vectors in the
sub-window of H centered at p, of dimensions always clear from the context (the dimensions
of the filter it is multiplied with), and ¢,(p) be the deformation features.

A model for an object with n parts is composed of a root filter wy and n pairs (w;,d;),
where w; is the filter of the i-th part and d; is a vector specifying the deformation cost of the
part placement.

An object hypothesis po, p1, - - -, Pn specifies the location of the center of each filter in a
feature pyramid, where the parts are constrained to move in the same level as the root'. The
score of a hypothesis is then given by the score of each filter at its respective location, minus
a deformation cost that depends on the location of each part with respect to the root position,

S(Po -, Pa) = Wo ¢ (o) + Y, W] &(pi) —d ¢a(pi —po).- (1)
i—1

i=

The deformation features are typically,

¢d(p):(1ax,y7x23y2)v (2)

in which case it is possible to find the optimal location of each part p;(po) as a function of
the root position pg efficiently (i.e. in time linear with the total number of locations), using
a generalized distance transform [8],

P; (Po) = argmax w;9(p) —d]¢u(p—po), 3)
peZ*x{z}
provided that the part locations are integral and limited to a single scale. The score of a root
position is then,

S(po) = Wy 9 (po) + Y w6 (bt (po)) — a7 6u(p? (Bo) — o). @
=1

3.2 Extension to 3D

In our algorithm, we allow the parts to move freely across scales, and extend the deformation
features of Equation (2) to include the z component of the disparity between root and parts
positions,

a(p) = (1,%,y,2,%,y*, 7). (5)

10r at a scale which is an integral multiple of the root scale, e.g. twice the root resolution in [11], since in this
case the root positions are a subset of the part ones. In any case this scale is predetermined.
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Figure 1: In the middle level of this illustration of a feature pyramid and drawn in solid red is
the outline of a root. In the levels above and below and drawn in dashed red are the outlines
of the same root scaled to correspond to the same rectangle in the image. In black is the
outline of a part deforming across scales. The size of the part is always the size of its filter,
here 2 x 2 HOG cells, which means that it becomes bigger relative to the root in the top level
and smaller in the bottom one.
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Figure 2: Lattices of part locations (in black) in a particular pyramid level. The red circles
indicate root positions. In a) the part and root positions are at the same scale, as is always
the case with standard models. In b) there is a mismatch between the scales of the two, and
we show how we approximate a root position pg(z;) by rounding it to the closest integral
position Po(z;) when looking for its optimal part placement.

An illustration of the consequences of allowing parts to move across scales is available in
Figure 1. Ideally, one would like to now find the optimal location of each part in this way,

p; = argmaxw, ¢(p) —d ¢s(p —po(z)), (6)
pez?

where po(z;) = (A% 0 xp, A% ™0y, z9) are the coordinates of the root position in the i-th
part’s level z;, A being the scaling factor between two successive levels of the feature pyra-
mid. The x and y coordinates of the root position need to be rescaled since they are defined
in a different level than the part’s coordinates, each level z of the feature pyramid storing fea-
tures extracted from the image scaled by a factor A. We compare the root and part locations
in the part’s level, but the particular level at which they are compared does not matter, since
each deformation cost d; can be scaled accordingly during training.

3.3 Approximation to the Generalized Distance Transform

Unfortunately, po(z;) is likely to be non-integral, and the generalized distance transform thus
cannot be used directly anymore. Another issue is that since pyramid levels are of varying
sizes, one cannot extend the distance transform to work across levels in the same way as it
works across 2D locations. In order to cope with the first issue, we approximate the root
position at the scale of the i-th part by the closest integer one,

Po(zi) = argmin |[p—po(z)||- 7N
peZ?x{z}

Using this approximate root position, we can now again use the generalized distance trans-
form in order to find the optimal part location for the approximate root position,

P} (po) = argmaxw; ¢(p) —d; ¢4 (p — Po(z:))- (8)
pez3?
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We expect this location to coincide most of the time with the optimal one for the real root
position, the difference between the real and the approximate one being at most 0.5 along
the x and y axes. However, the optimal score returned by the transform will generally not
match the score of any real root and part configuration, and might even be higher than the
true optimal one, so we recompute it in constant time using this time the real root position

Po(zi),
S(po) =wg 0(po)+ Y. W/ 0(B; (po)) — d] @a (P (P0) — Po(z1)) )
=1

in order to obtain a lower bound on the true optimal score.

The second issue was that the generalized distance transform cannot be extended to work
across pyramid levels. Since we can generally expect the number of scales in which parts
will deform to be small (much smaller than the number of possible 2D locations at each
scale), we brute-force search the optimal level z; of each part, and for each level use an
efficient 2D distance transform. Brute-force searching the optimal level also enables the use
of costs other than the quadratic one of Equation (5), as long as they remain separable in all
dimensions. The results of the transform of Equation (8) can be reused for each root level
with common part levels, such that by precomputing them for every part level in advance,
the total number of transforms is reduced from being quadratic to linear in the total number
of pyramid levels.

4 Experiments

To evaluate our approach to increase the expressivity of DPMs by allowing parts to also move
across scales, we trained a mixture of 6 models on all 20 classes of the Pascal VOC 2007
challenge [5]. We compare both against standard 2D models as well as “exact” 3D ones,
searching exhaustively for the optimal part placement instead of using our approximation
of §3.3. We based our implementation on our publicly available system [3, 4], which we
extended to also deal with the training of the models.

4.1 Implementation

Our DPM implementation uses the same modified Histogram of Oriented Gradients (HOG)
features [1] and the same initialization of the parts locations, sizes, deformation cost, and
left/right pose assignments as in [9, 11]. It similarly initializes the parts at twice the reso-
lution of the root (one octave below), and we configured it to always compute 5 scales per
octave in the feature pyramid. The only additional parameter relative to the initialization
of the 3D models that we needed to specify was the initial deformation cost of the parts,
corresponding to the z-coordinate of each vector d;. We set their linear components to 0
and their quadratic one to 0.01, such that the initial dispersion of parts across scales was
approximately centered and of standard deviation 1 level.

While brute-force searching the optimal scale of each part, during both training and
testing, we restricted the search to a 7 levels window (+£3 levels) centered on the level one
octave below the root, which corresponds to z; € [z0 —5—3, ..., zo — 5+ 3], meaning that we
allowed parts to grow or shrink at most by a factor of 25~ 1.5 compared to their reference

size. This setting proved sufficient for parts to fully exploit their additional freedom along
the z-axis given our initialization of the deformation cost. Since there is some randomness
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aero bike bird boat bottle bus car cat chair cow table
voc-released (AP) 289 60.2 1.7 83 20.6 535 513 69 18.7 20.1 13.8
2D DPM (AP) 30.3 577 44 114 252 550 533 11.1 192 225 244
3D DPM (AP) 335 594 69 13.1 287 59.0 529 19.5 206 268 259
Rel. gain (%) 106 2.8 554 151 139 72 -08 759 73 194 6.3

dog horse mbike person plant sheep sofa train tv mean
voc-released4 (AP) 3.3 545 476 388 58 143 28.1 37.3 39.0 27.6
2D (AP) 50 592 485 357 86 188 284 423 422 30.2
3D (AP) 65 612 489 329 11.1 215 31.7 445 438 324
Rel. gain (%) 292 35 0.8 77 295 143 11.6 53 39 152

Table 1: Pascal VOC 2007 challenge Average Precision (area under the Precision/Recall
curve) comparison for the models of [9] as well as our 2D and 3D models. What we call
relative gain is the improvement of 3D models over 2D ones.

involved in the initialization of the models, we always initialized the seed of the random
number generator to the same value while training 2D and 3D models.

To demonstrate the performance of our implementation, we also evaluated the models
included in [9], which achieve close to state-of-the-art detection results, using the same eval-
uation parameters as our models. These evaluation parameters might not be optimal for those
models, and we therefore include their results as a reference point only.

4.2 Results

The performances of all 3 kinds of models on the Pascal VOC 2007 challenge are displayed
in Table 1. The scoring function of the Pascal VOC development kit computes the average
precision score for each model by sampling the Precision/Recall curve in eleven points of
recall 0.0,0.1,0.2, ..., 1.0. In order to increase its precision, which is particularly impor-
tant for difficult classes obtaining less than 10% AP, we modified it to take into account all
points of the PR curve. This modification explains why the scores we obtain on some diffi-
cult classes are lower than usually reported, and why some authors obtain scores above 9%
AP while correctly detecting only one object on the whole data-set (since the first point is
sampled with recall 0.0, as long as the first detection is correct the AP is guaranteed to be at
least ﬁ).

The average precision of our 3D models improves over the 2D ones for 18 of the 20
classes, increasing on average by more than 15%. The average time taken by our imple-
mentation to detect objects in an image using one of the 2D models was 77 ms. Out of
those 77 ms, we measured that 22 were spent computing distance transforms. When using
a 3D model, the average total time increased to 99 ms, corresponding to a doubling of the
transform time.

Apart from increasing the expressivity of the models, allowing parts to move across
scales might also improve performance by simulating a scan of the image at a higher res-
olution. This may happen because HOG grids in neighboring pyramid levels have always
the same step size (typically 8 pixels), but slightly different dimensions. This difference in-
tertwines their positions on the image as in Figure 2 b), and may make the whole process
similar to searching for objects on several slightly misaligned HOG grids.
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aero bike bird boat bottle bus car cat chair cow table
Brute-force (AP) 50.1 69.0 18.0 209 388 727 59.1 33.0 28.8 46.5 47.3
Approx. DT (AP) 499 69.2 179 21.5 385 727 59.1 324 28.7 463 473

dog horse mbike person plant sheep sofa train tv mean
Brute-force (AP) 18.7 77.2 603 329 239 376 443 560 643 45.0
Approx. DT (AP) 184 772 603 33.0 246 372 443 56.0 642 449

Table 2: Pascal VOC 2007 challenge AP comparison on the first 100 images of each class
for the exact as well as our approximation to the generalized distance transform method of
§3.3 using our 3D models.

A comparison of our approximate method versus the “exact” one which brute-force
searches the optimal location of each part is shown in Table 2. We evaluated both meth-
ods only on the first 100 images of each class because of the prohibitive time taken by the
exhaustive search. These results demonstrate the accuracy of the approximation.

5 Conclusion

The idea motivating our work is to make full use of all the convolutions between pyramid
levels and part filters evaluated in DPMs, reusing them to deform parts across multiple scales.
The extension we presented increases on average the detection accuracy of the models by
15% for a moderate augmentation of its total computational cost, the number of convolutions
and distance transforms remaining constant. Despite relying on an approximation to the
generalized distance transform, our approach obtains scores virtually equal to its exact but
much slower counterpart.
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