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Abstract

We propose a new method based on graph cuts for joint segmentation of monotonously
growing or shrinking shapes in time series of noisy images. By introducing directed infi-
nite links connecting pixels at the same spatial locations in successive image frames, we
impose shape growth/shrinkage constraint in graph cuts. Minimization of energy com-
puted on the resulting graph of the image sequence yields globally optimal segmentation.
We validate the proposed approach on two applications: segmentation of melting sea ice
floes from a time series of multimodal satellite images and segmentation of a growing
brain tumor from sequences of 3D multimodal medical scans. In the latter application,
we impose an additional inter-sequences inclusion constraint by adding directed infinite
links between pixels of dependent image structures.

1 Introduction
One of the great challenges in computer vision is automatic segmentation of objects in
videos. This task becomes more difficult when image sequences are subject to low signal-to-
noise ratio or low contrast between intensities of neighboring structures in the image scene.
Such challenging data are acquired routinely, for example, in medical imaging or satellite
remote sensing.

While individual frames can be analyzed independently [3], temporal coherence in image
sequences provides a lot of information not available for a single image. Two categories of
spatio-temporal video segmentation techniques can be distinguished. Causal methods con-
sider only past data for segmenting each next frame [16, 19]. Omniscient techniques use both
past and future data by treating the video as a 3D space-time volume, so that segmentation
of the entire image set supports each of the individual segmentations [7, 10].

In this work, we focus on segmenting shapes which only grow or shrink in time, from se-
quences of extremely noisy images. Examples of growing shapes are forest fires in satellite
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images and organ development in medical imaging. We consider image sequences, where
both foreground and background intensity distributions can vary significantly over time, fore-
ground can be heavily occluded or undistinguishable from a part of the background. Most of
previously-proposed spatio-temporal methods rely on coherence of foreground/background
intensity distributions in consecutive image frames, and therefore fail when segmenting such
noisy data sets. Few approaches have been specifically designed for spatio-temporal seg-
mentation of shapes from magnetic resonance images (MRI) with low signal-to-noise ra-
tio [17, 20]. Applied to multi-temporal sequences that show a monotonously growing or
shrinking structure, however, these smoothing methods bias results towards the mean shape
obtained from averaging consecutive segmentations and, hence, underestimate rapid growth
or shrinkage events.

To address this issue, we propose a new segmentation framework based on graph cuts for
the joint segmentation of an image sequence. It introduces growth or shrinkage constraint in
graph cuts by using directed infinite links that still guarantee sub-modularity, connecting pix-
els at the same spatial locations in successive image frames. By minimizing an energy com-
puted on the resulting spatio-temporal graph of the image set, the proposed method yields a
globally optimal solution (Sec. 2). Differently from the state-of-the-art spatio-temporal tech-
niques, it does not rely on the coherence of the intensity in time, but only on the coherence
of the shape. To summarize, the main contribution of this paper is:

1. a new method for segmentation of image sequences with the constraint of shape growth/
shrinkage,

2. in order to be able to segment extremely noisy data,
3. in a low computational time (see Fig. 2(b)).

We demonstrate the performance of the proposed framework for two applications with
very noisy image sequences (Sec. 3): The first one addresses the segmentation of multiyear
sea ice floes in a set of satellite images acquired through two different satellite sensors. The
new method returns accurate melting profiles of sea ice, which is important for building
climate models. The second application deals with the segmentation of brain tumors from
longitudinal sets of multimodal MRI volumes, where we impose additional inter-modal in-
clusion constraint for joint segmentation of different image structures.

2 Enforcing shape growth/shrinkage in graph cuts
Graph cut is an optimization tool, based on the rewriting of image segmentation problems
as (s,t)-min-cuts in graphs, on the equivalence of (s,t)-min-cut and max-flow problems, and
on the existence of efficient algorithms to solve the latter ones [2, 4, 9]. It can be used to
find the globally optimal binary segmentation of images where the segmentation criterion E
is related to a Markov Random Field with submodular interaction terms:

E(L) = ∑
pixels i

Vi(Li) + ∑
i∼ j

Wi, j(Li,L j), (1)

where L is the binary labelling function to be found (Li is the label of pixel i), individual po-
tentials Vi are any binary real-valued functions measuring the disagreement between a prior
probabilistic model and the observed data, i ∼ j denotes a pair of neighboring pixels (any
neighborhood system can be used), and Wi, j are any real-valued interaction terms between
neighboring pixels expressing spatial coherency of labels.
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Figure 1: (a) Enforcing shape growth in an image sequence. (b) Segmenting jointly two
sequences S1 and S2, by enforcing the foreground of S1 to contain the foreground of S2,
with directed infinite links between all pixels of coordinates (x,y, t), from S1 towards S2.

A directed infinite link between two pixels expresses precisely the constraint that this pair
of pixels cannot have the pair of labels (0,1). In the case of image binary segmentation, if 0
stands for the background and 1 for the foreground object, then this means that the second
pixel may belong to the foreground only if the first one already does.

2.1 Related works

Extensions of graph cuts to multi-label problems (i.e. multi-class segmentation) have been
proposed but generally do no guarantee optimal solutions, except e.g. in the case of Ishikawa’s
construction [12], which requires labels to be ordered and the interaction term to be a con-
vex function of their differences, i.e. Wi, j(Li,L j) = g(Li− L j) with g convex. This graph
construction makes intensive use of infinite links for constraining the min-cut solutions to
satisfy desired properties required to interpret them as image segmentation solutions. This
was the source of inspiration for our work.

A related study to shape constraints can be found in [6], where one image has to be seg-
mented in several possibly-overlapping objects. Infinite links are used for imposing common
boundaries, inclusion or exclusion conditions between objects in a same single image.

Wolz et al. [20] used graph cuts for simultaneous segmentation of serially acquired MRI
volumes. They set temporal edge weights by computing intensity differences of voxels at
the same spatial locations. Thus, the same smoothness constraint was applied both in space
and time, and the segmentations at different timepoints were forced to be consistent in areas
where a small intensity difference between the images exist. Unfortunately, this type of
temporal constraint is suboptimal in image series where intensity distributions of foreground
and background vary significantly over time. To the best of our knowledge, our work is
the first to use infinite links for enforcing a temporal growth constraint, and we illustrate in
Sec. 3 the advantage of the new method over previous approaches such as [20].

2.2 Growth/shrinkage constraint
Shape growth in a sequence of images I(t) can be easily expressed as the property that the
foreground object cannot lose any pixel when time advances. Otherwise said, if a pixel
belongs to the foreground object at time t1, then it belongs also to the foreground object for
all times t2 > t1. Equivalently, and simpler: a pair of pixels ((x,y, t),(x,y, t +1)), sharing the
same location and immediately successive in time, cannot have the pair of labels (1,0), with
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the same binary segmentation notations as above. This can be enforced by setting directed
infinite links from all pixels to their immediate predecessor in time.

Given T images I(t), t ∈ [1,T ], and as many associated submodular segmentation criteria
Et , we transform the problem of segmenting independently each image I(t) according to its
criterion Et , into a joint segmentation of all images together, by enforcing the shape growth
constraint with directed infinite links (see Fig. 1(a)). Thus, instead of applying graph cut T
times independently to planar grids of the size of the images W×H, we apply graph cut once
to a 3D grid W ×H×T , consisting of the same nodes and edges, but with additional directed
infinite links in time. The criterion to be minimized is then E = ∑t Et under the constraint of
shape growth, and the solution found by graph cut is globally optimal, since the problem is
binary and submodular.

One can enforce shape shrinkage instead of shape growth, by reversing the direction of
infinite links. Another straightforward extension consists in applying this approach to the
case of sequences of 3D images. The directed infinite links are then set for all pairs of voxels
of the form ((x,y,z, t),(x,y,z, t−1)) to enforce 3D shape growth.

In some applications, it may happen that growth (or shrinkage) is only very probable, but
not with probability 1, i.e. growth should be considered as a probable hint but should not be
enforced strictly at all locations at all times. In that case, one may replace directed infinite
links by directed finite links: the weights of these links will encourage growth (more or less
strongly depending on the weight), but sufficiently disagreeing potentials Vi may make the
shape locally shrink instead. Thus, shrinkage would be discouraged but not forbidden.

The precise theoretical worst case complexity of the proposed method depends on the
max-flow algorithm used, and ranges from quasi-quadratic to cubic. However, the computa-
tional time observed in practice is known to be much faster on typical image segmentation
problems. We used the graph-cut algorithm of Boykov and Kolmogorov [2], and we report
a linear observed complexity with the total number of pixels T ×W ×H (Fig. 2(b)).

In case of long sequences of big images, the memory space required may exceed com-
puter’s capacities. This is however not an issue, as there exist graph cut implementations for
massive grids [5] meant for such cases, where all information is not stored in the memory at
all times. This was not required for the experiments in this article though.

2.3 Inter-sequences inclusion constraint

It is also possible to segment jointly several images sequences I(s)(t) with the constraint that
the foreground object in some sequences should be included in the foreground object of some
other sequences (this will be useful in Sec. 3.2). This can be done similarly by considering
together the graphs associated to all sequences, and, for each inclusion constraint, adding
directed infinite links between pixels of the desired sequences s1 and s2, sharing same loca-
tion and time: such links from (s1,x,y, t) to (s2,x,y, t) for all x,y, t will force the foreground
object in sequence s1 to contain the one of sequence s2 (see Fig. 1(b)).

Naturally, instead of imposing an inclusion constraint over the whole time span and the
whole image space, it is possible to specify spatio-temporal domains of constraints, for in-
stance to express that the inclusion property between two sequences has to be satisfied inside
a pre-defined region and/or during a pre-defined time span [t1, t2] only, by adding directed
infinite links in these sets only.
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2.4 Rewriting as a multi-label problem
We express here an alternative point of view on sequence segmentation with growth con-
straint. The successive labels Li(t) of a given pixel i over time might change only once,
and only from 0 (background) to 1 (foreground object). Hence, this vector of labels Li(t) is
of the form (0,0, . . . ,0,1, . . . ,1,1) and can be represented by just the time index of the first
1. This way, our initial binary optimization problem on a sequence of images with shape
growth constraint can be seen as a multi-label problem defined on one single image, without
any constraint. It turns out that this new problem can be expressed in the Markov Random
Field form (1) and satisfies the conditions needed to apply Ishikawa’s construction [12] to
be solved globally. The graphs built by the two approaches are actually similar. Our initial
formulation is however more flexible, in that interaction terms can depend on t, and more
natural, in that inclusion constraints can easily be enforced in spatial or/and time subregions
only, while this would not be expressible with the multi-label formulation.

3 Experimental results
We applied the proposed method for two applications: (a) segmentation of a melting mul-
tiyear ice floe from a sequence of satellite measurements and (b) segmentation of grow-
ing brain tumors from multimodal MRI volumes. The performance of our framework with
monodirectional links, [Mono=const], is compared with other graph-cut-based methods:
• [w/o]: Graph cut with no temporal links (independent segmentation of each frame).
• [Feedforward]: Images are segmented successively by graph cut. After segmenting the

first frame, foreground/background pixels are marked as seeds with infinite unary costs in
the next frame for enforcing growth/shrinkage.
• [Bi=const]: Smoothing by introducing bidirectional temporal links, i.e. in both direc-

tions (from t to t +1 and from t +1 to t), with a constant weight w (finite or infinite).
• [Bi=variable]: As proposed in [20], temporal links are computed based on intensity

differences between pixels in successive image frames, i.e. in the same way as spatial links.
To compare the methods we used the Dice score [8], D = (2|M̂∩M|)/(|M̂|+ |M|), where

M̂ and M are manually and automatically segmented foreground regions, respectively.

3.1 Application 1: melting sea ice in satellite images
Sea ice is both an active participant of the Earth’s climate and a sensitive climate indicator.
Therefore, it is important to automatically monitor how rapidly sea ice floes melt. Previous
studies attempted to consider temporal information for ice floe segmentation, by using ice
percentages, area and shape parameters of ice floes at the previous time moment as priors
for segmenting a floe at the next time moment [11, 19]. While a multiyear ice floe can
only melt in the summer period, these feedforward approaches were unable to accurately
estimate melting ice profiles because of the low signal-to-noise ratio and lack of contrast
in satellite data.

We aimed at segmenting a multiyear ice floe from a 45-day sequence (summer period
of 2008) of measurements over the polar regions by two Aqua satellite sensors: Advanced
Microwave Scanning Radiometer - Earth Observing System (AMSR-E, 6.25 km spatial reso-
lution) and Moderate-Resolution Imaging Spectroradiometer (MODIS, band 1, 250 m spatial
resolution). Fig. 2(a) shows an example of the MODIS and AMSR-E images. The floe was
tracked from the AMSR-E data, where a multiyear ice has a low microwave emissivity (dark
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Figure 2: (a) AMSR-E and MODIS images captured on the 244th day. (b) Computational
time for the proposed segmentation of the ice floe set as a function of the number of frames.

area in Fig. 2(left)), and is in this way distinguishable from clouds and younger ice which has
a higher emissivity (white area in Fig. 2(left)). However, the low spatial resolution of these
data does not allow to accurately quantify the ice floes areas. In accordance with tracking
measurements, a time series of T = 75 MODIS and upscaled AMSR-E images with the ice
floe was built, with spatial dimensions of 800×800 pixels. We denote each MODIS image
by It , t = 1, ...,T .

In order to apply the proposed method with a shrinkage constraint to the selected time
series, the images must be aligned first, so that the property that the floe in the image It+1 is
included in the floe of the image at the previous time moment It can be expressed directly in
terms of pixel locations. For this purpose, we detected a reliable region of the foreground,
RF , and a reliable region of the background, RB, from the AMSR-E images, and computed
histograms of the intensities It of the floe, pt(I|F), and of the background, pt(I|B), respec-
tively. We calculated T maps of foreground probabilities as

pt
i(F |I) =

pt(I|F)Pt
i (F)

pt(I|F)Pt
i (F)+ pt(I|B)Pt

i (B)
, Pt

i (B) =
At

i
max j At

j
, Pt

i (F) = 1−Pt
i (B),

where At , t = 1, ...,T are AMSR-E images smoothed by Gaussian filter. The images It were
aligned by exhaustive searching over rigid motions (rotations and translations) to maximize
the correlation between maps of floe probabilities at the current and previous time moments.
We then computed potentials and interaction terms between neighboring pixels as:

V t
i (1) =−ln[pt

i(F |I)], V t
i (0) =−ln[pt

i(B|I)], W t
i, j = δLi 6=L j β exp

[
−
(It

i − It
j)

2

2σ2

]
, (2)

where σ is a standard deviation of It , β is a parameter that controls the importance of the
spatial interaction energy term. We found experimentally that setting β = 2 yields robust
results. The proposed method was applied with monodirectional temporal links to enforce
floe shrinkage, as described in Sec. 2, with the fixed edge weight w varying from 0.25 to ∞.
The results [Mono=0.25...∞] are compared with those obtained with other graph-cut-based
approaches (listed above) in Table 1 and in Fig. 3-4. Both graph-cut with no temporal links
and feedforward approaches show the worst performances, and prove to be not well suited
for segmenting such noisy data sets. When a feedforward method encounters a frame with
the part of the floe obscured by clouds and thus undistinguishable from the background, it
segments only the visible part of the foreground, and then is trapped in a non-sense seg-
mentation for the rest of future times. The method using gradient-based temporal links
[Bi=variable] [20] also yields poor segmentation accuracies, because it is sensitive to both
noise and variation of intensities of foreground/background in consecutive frames.

We explain in Fig. 3-4 the advantage of using monodirectional infinite links versus bidi-
rectional links in the temporal dimension. Bidirectional edges with low values of w enforce
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Feedforward w/o Bi = variable Bi = 4 Bi = 16 Mono = ∞

Figure 3: (From top to bottom) Segmentation contours (red) for three time moments (days
230, 235 and 267) computed by the graph-cut methods: (From left to right) [Feedfor-
ward], [w/o], [Bi=variable], [Bi=4], [Bi=16], proposed method with monodirectional infi-
nite links. Manual segmentation is shown in green. The rightmost part of the white area in
the middle row is not part of the object, but another ice floe who temporarily collided.

Table 1: Mean and standard deviations of the Dice scores for the proposed method
[Mono = ∞] and graph-cut-based approaches used for comparison.

Method Feedforward w/o Bi = variable Bi = 16 Mono = ∞

Dice score .554 ± .128 .933 ± .099 .958 ± .048 .978 ± .007 .980 ± .007

only smoothness of variation of the contour in time, and yield segmentation errors in the
case of low foreground/background contrast. For instance, in the second image of Fig. 3, the
floe of interest collided temporarily with another ice floe. When using a weak smoothness
constraint (see segmentation contour [Bi=4]), the small encountered floe collided with the
floe of interest during a certain number of consecutive frames would be considered as a part
of the foreground. Enforcing more smoothness in space-time to avoid this has the unde-
sirable effect of smoothing the foreground shape, so that the segmented foreground area is
lower (underestimated) than the ground-truth for the first frames, and higher (overestimated)
for the last frames (see results [Bi=16] in Fig. 3 and-4(right)). With the increase of w, the
estimated foreground tends to the constant shape for all time moments, and the Dice score
decreases.

When the proposed shrinkage constraint is used, with the increase of w→ ∞ segmenta-
tion accuracy increases, and w = ∞ yields results with monotonous shrinkage of the shape
size. Moreover, the proposed method copes well with rapid shrinkage events, without under-
estimating preceding images, or overestimating the event itself at onset. Another advantage
of using directed infinite links is that there are no parameters to estimate in the temporal
dimension. Fig. 2(b) depicts the computational time for the proposed graph-cut-based opti-
mization as a function of the number of frames. The total computational time grows linearly
with the number of frames, and is approximately twice the time that is taken by the indepen-
dent segmentation of each frame.
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Figure 4: (Left) Mean and standard deviation for the dice score as a function of the temporal
link’s weight, when using mono- (green) and bidirectional (red) temporal links. (Right) Area
of a multiyear ice floe as a function of time, computed by using mono- and bidirectional links
with different weights.

Figure 5: Two time series of T2 and FLAIR MR image volumes, each of which acquired
about 3-6 months apart. The left case is rapidly growing between the second and fourth
scene, the right case displays intensity modifications in the last scene, leading to a subopti-
mal performance of the initial multimodal segmentation (yellow) [15]. The proposed multi-
temporal segmentation with growth constraints (green) delineates areas similar to the manual
evaluation (magenta), being more robust against intensity variations of the MR images. It
does not smooth out outlines of rapidly growing tumors as conventional bi-directional tem-
poral constraints would do.

3.2 Application 2: growing tumor in 3D medical scans
Glioma is the most frequent primary tumor of the brain. The tumor is known to grow steadily,
and lesions are diagnosed with respect to volume change in different magnetic resonance
image (MRI) modalities. In our experiment we evaluate a set of 760 multimodal image vol-
umes, each comprising T1, T1c, T2, and FLAIR MRI, acquired from ten different glioma
patients and with each patient series having 3-14 time points. All image volumes are rigidly
registered by using the FLIRT registration tool [13], and three orthogonal 2D slices intersect-
ing with the tumor center are manually annotated in every volume, representing an approx-
imate truth. Full 3D segmentations for images of each individual time point are obtained
using a generative model for multimodal brain tumor segmentation [15]. This algorithm
models the lesion with a latent atlas class [17] amending the tissue atlas of the standard EM
segmenter. It was applied to each multimodal data set at each time independently, delineat-
ing the lesion individually in each modality. The model assumes that changes of the core
(visible in T1c) will occur within the larger edema regions (visible in T2 or FLAIR) and,
hence, to only have class transitions from healthy to edema and from edema to core. As the
tumor grows steadily [1, 18], we can assume that negative volume changes stem from imag-
ing artifacts. To this end we model the tumor volume to be either stable, regularizing the
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segmentation along time and suppressing noise, or to expand between any two time points.
We identified the foreground label F with tumor (edema and core) and background B with

healthy tissue. Then the potential V s,t
i (Ls,t

i ) of label Ls,t
i at voxel i, time point t, and imaging

sequence s is equal to V s,t
i (0) = ps,t(F |Is,t) and V s,t

i (1) = ps,t(B|Is,t) = 1− ps,t(F |Is,t). The
tumor probabilities ps,t(F |Is,t) were calculated from image volumes I using the generative
model [15], and we identified tumor subclasses with p(F |Is=T 1,t) for core, and p(F |Is=T 2,t)
with edema. We modeled the 3D spatial constraints through a 26 neighborhood (N ) linking
the central voxel with all its immediate neighbors. Interaction terms W s,t

i, j (L
s,t
i ,Ls,t

j ) between
neighboring voxels in each sequence s ∈ [T 1,T 2] are computed as

δLi 6=L j β
α(i, j)

αtot
exp

(
−
(

Is,t(i)− Is,t( j)
A

)2
)

with β = 0.5, α(p,q)= 1
distance(p,q) , αtot =∑q∈N (pixel p) α(p,q) and A= 1

3 (max Is,t −min Is,t).
We impose growth constraint in 3D+t as explained in Sec. 2.2, and inclusion constraints as
in Sec. 2.3 : the foregrounds in T1 and T1c modalities are required to be included in the one
of T2, which is included in the one of FLAIR.

In our test we first segment each image at each time independently by graph cut, and
calculate average Dice scores for each image series as a baseline. Then we test different reg-
ularizations, i.e., [w/o], [Mono] and [Bi]. Fig. 6(left) shows results for all ten time series. We
find that a weak temporal regularization (both bi-/monodirectional with w� 1) outperforms
a segmentation without temporal constraint. Increasing the bidirectional temporal regular-
ization towards high values decreases the performance, while introducing monodirectional
“growth” regularization through infinite links improves performance (see Fig. 5). Moreover,
the log(volume)-time graph (Fig. 6) shows the exponential growth pattern that is associated
with this disease [1]. It can be further analyzed, for diagnosis and treatment monitoring, e.g.
through algorithms estimating the speed of the tumor outlines under anatomical constraints
[14]. Extension of the current 5D segmentation could integrate this speed estimation, or
extend the multimodal tumor segmentation [15] for longitudinal data sets.

4 Conclusions and future work
We addressed the problem of shape segmentation in 2D and 3D image time series, where
shapes can only grow/shrink. In order to enforce shape growth, we proposed a new graph cut-
based method for computing the globally optimal joint segmentation of an image sequence.
The main idea was to introduce directed infinite links between pixels at the same spatial
locations in successive image frames, which prohibit a shape to shrink or grow over time,
and to perform a graph cut optimization on the constructed graph. We also demonstrated the
possibility to impose inter-sequences object inclusion constraint by adding directed infinite
links to the joint graph associated to all sequences. We validated the performance of the pro-
posed approach for the segmentation of a shrinking ice floe and of growing tumor volumes
from multimodal sequences of satellite and 3D MR images, respectively. The new method
proved to be robust to very noisy or low-contrast images, and showed linear complexity.

We plan to apply the proposed framework for other applications, such as the segmenta-
tion of fires from satellite surface temperature measurements. We are also currently extend-
ing our work on tumor segmentation to the case of several medically-motivated classes Ci,
expressing tumor evolution stages, that satisfy an inclusion constraint Ci ⊂Ci+1,∀i, consid-
ering additional relations between tumor substructures.
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Figure 6: (Left) Boxplot changes in the average segmentation performance for the ten image
sequences when testing different regularization approaches. Using a strong monodirectional
regularization acting as a growth prior yields the best results. (Right) Volume-time plot for
a patient with 14 observations. Solid lines indicate edema, dashed indicate tumor core that
starts growing with constant rate at around day 500. The segmentation with growth con-
straint (red) returns results comparable to the manual segmentation (green). Segmentations
obtained by evaluating image volumes of each time point individually (blue) show significant
variation, even obscuring the overall trend.
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