
PFISTER et al.: LARGE-SCALE LEARNING OF SIGN LANGUAGE BY WATCHING TV 1

Large-scale Learning of Sign Language by
Watching TV (Using Co-occurrences)

Tomas Pfister1

tp@robots.ox.ac.uk

James Charles2

j.charles@leeds.ac.uk

Andrew Zisserman1

az@robots.ox.ac.uk

1 Department of Engineering Science
University of Oxford
Oxford, UK

2 School of Computing
University of Leeds
Leeds, UK

Abstract

The goal of this work is to automatically learn a large number of signs from sign
language-interpreted TV broadcasts. We achieve this by exploiting supervisory informa-
tion available in the subtitles of the broadcasts. However, this information is both weak
and noisy and this leads to a challenging correspondence problem when trying to identify
the temporal window of the sign.

We make the following contributions: (i) we show that, somewhat counter-intuitively,
mouth patterns are highly informative for isolating words in a language for the Deaf, and
their co-occurrence with signing can be used to significantly reduce the correspondence
search space; and (ii) we develop a multiple instance learning method using an efficient
discriminative search, which determines a candidate list for the sign with both high recall
and precision.

We demonstrate the method on videos from BBC TV broadcasts, and achieve higher
accuracy and recall than previous methods, despite using much simpler features.

1 Introduction
TV programmes in many countries across the world are now routinely broadcast with both
subtitles and an overlaid signer translating to the Deaf audience. Our aim is to exploit this
material to learn signs corresponding to English words in the subtitles [3, 5]. Within the UK
alone, over five hours of sign language-interpreted TV programmes are broadcast every day
by the BBC. This data provides a continuous and rich source of training material for learning
sign language.

Our long term vision is to build a database of word-sign pairs for a large number of signs
and signers that can be used to train a large-scale person-independent sign language to text
translator. This translator could then be used by some of the 70 million Deaf worldwide to
communicate with people who don’t understand sign language.

Our objective in this paper is to build the database, or in more detail: given an English
word, to automatically and accurately obtain the video of the sign corresponding to that word.
The mechanism for learning the sign is the following: the English word is used to select a
set of subtitles and associated videos that contain the word – the positive sequences – and
a set of subtitles and videos that do not – the negative sequences [3, 5]. The video of the
sign is learnt from this training material. This is a very challenging correspondence problem
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Figure 1: Learning signs from co-occurrences of subtitle text, mouth and hand motion. The top three rows
are positive subtitle sequences which contain the text word and sign for ‘snow’. The final row is an example of
a negative subtitle sequence which does not contain ‘snow’. Signs are learnt from this weakly aligned and noisy
data. A fixed size temporal window is slid across the frames in which mouth motion occurs (blue). The rest of the
sequence can be ignored, thus reducing the temporal search space. Candidate signs are proposed by a discriminative
MIL search using temporal correlation. A subset of these candidates (red) are used to initialise a MI-SVM, resulting
in the final correspondence matches (green). The red and green lines on the signer show the detected limbs and head.

as the subtitles are not temporally aligned with the signs – a sign (typically 8–13 frames
long) could be anywhere in the overlapping subtitle video sequences (typically 400 frames).
Furthermore, there is not a one-to-one mapping between signs and English words, and the
occurrence of a word in the subtitle does not always imply that the word is signed. Thus the
supervision provided is both weak and noisy.

In this paper we demonstrate that co-occurrences can be used to significantly improve
the ‘signal-to-noise’ ratio for this problem. In particular, we demonstrate that in sign lan-
guage, co-occurrences of lip and hand motion can be used to substantially narrow down the
correspondence search space – signers often mouth the word that they are signing, an im-
portant cue that has been overlooked in previous work to the best of our knowledge. This
idea is not limited to sign language: co-occurrences of lip motion and speech can be used to
aid speech recognition [2, 9, 21], and the vicinity of objects can be used to aid human action
recognition [23] (e.g. a phone close to human and a pose with a hand close to the head can
be used to detect that the action is ‘phoning’).
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We cast the problem as one of Multiple Instance Learning (MIL) [7, 18], where the
training data are visual descriptors (hand trajectories) with weak supervision from subti-
tles. We proceed in three steps: (i) the search space for correspondences is significantly
reduced by exploiting lip and hand motion co-occurrences to filter away irrelevant intervals
of the temporal sequences (Section 2); (ii) candidates for the signs are obtained using an ef-
ficient discriminative search over all remaining sequences (Section 3); and finally (iii) these
candidates are then selected or rejected using the MIL support vector machine framework
(MI-SVM) [1]. Figure 2 shows the processing pipeline of the sign learning algorithm.

The building blocks for the method are a state-of-the-art automatic real-time upper-body
tracker and an accurate mouthing classifier (Section 4). We demonstrate that with the re-
duction in search space and discriminative learning, quite simple features are sufficient to
successfully extract the signs – in particular we do not need to represent hand shape at this
stage. As will be seen in Section 5, we achieve superior results to previous work at a much
lower computational cost.

In previous work, Farhadi and Forsyth [12] considered the problem of aligning an Amer-
ican Sign Language sign with an English text subtitle, but under much stronger supervisory
conditions than more recent approaches. The closest work to ours is Buehler et al. [3] who
used similar weak and noisy supervision from subtitles. However, their method does not ex-
ploit mouth motion, and relies on performing a computationally expensive brute force search
over all temporal windows – here we avoid both the exhaustive search and also the necessity
to represent hand shape and orientation as they did. Cooper and Bowden [5] used a tempo-
rally constrained adaptation of apriori data mining on hand and head positions to learn signs.
Their method is a complementary method to ours and provides another way to select can-
didates. Other approaches have typically required manual training data to be generated for
each sign [6, 8, 15, 20, 25, 26, 27], i.e. a signer performs each sign in laboratory conditions
with manual labelling of the signs afterwards – a labour-intensive and expensive process.

2 Shrinking Search Space using Mouthing Co-occurrences
A key contribution of this paper is the discovery that mouth patterns are very helpful for
aligning signs. This is because the Deaf in most countries commonly use their mouth to
express the lip pattern of the English (or other written/spoken language) equivalent word
that they are signing, also known as ‘mouthing’. This mouth information is valuable in two
distinct ways: (i) knowing that the Deaf mouth the word in the majority of signs, one can
discard frames where the mouth is not open, and thus considerably narrow down the search
space when matching signs; and, to a lesser extent, (ii) the similarity of lip patterns across
repetitions of the same sign can be used as an additional cue for matching different instances
of the same sign.

In order to use the mouthing information to discard frames where the signer is not speak-
ing, we train a per-frame classifier for predicting ‘speaking’ vs ‘not speaking’ (details in
Section 4.3). The output of this classifier is used to prune the search space (effectively filter-
ing away frames in which the signer is predicted not to be mouthing). The remaining search
space is marked blue in Figure 1.

This results in a substantial decrease in the number of temporal windows that need to be
considered for correspondences. For example, in the sequences of Figure 1, the search space
is l = 400 frames, and sign correspondences are searched for with a fixed-size temporal
window of w = 13 frames. Without using mouthing information, this would yield n = l−
w+ 1 = 388 candidate temporal windows per positive sequence. However, by cutting this
search space down to three l = 25 frame windows using mouthing information, the number
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Preprocess all videos
      for each frame
            – segment signer and locate signer’s head and hands (Sect 4.2)
            – classify mouth as open/closed and extract mouth SIFT
                     descriptor (Sect 4.3)
        output: hand and head positions, mouth open/closed probability 
                and mouth SIFT descriptor

For a particular word, e.g. ‘snow’
      – find positive & negative sequences using subtitles (Sect 4.1)
      – obtain temporal windows by sliding a fixed-size window over 
               frames with an open mouth in each sequence (Sect 2)
      – extract feature vector for each temporal window (Sect 4.4)
      – find sign candidates using discriminative MIL search (Sect 3.1)
      – train a MI-SVM classifier with initial candidates (Sect 3.2)
        output: instances of the sign ‘snow’ 

Figure 2: Sign extraction pipeline.
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Figure 3: ROC curve of the person-
independent mouthing classifier.

of candidate windows drops 90% to 39. This order-of-magnitude reduction in search space
not only improves the ‘signal-to-noise’ ratio in the correspondence search but considerably
speeds up the search.

3 Automatic Sign Extraction using MIL
Given a target word occurring in the subtitles, the aim here is to extract examples of the
corresponding sign. The key idea is to search for signs that are common across the positive
sequences (the sequences where the target word occurs in the subtitles), but uncommon in
negative sequences (where the target word doesn’t occur in the subtitles). Since the positive
labels are on a subtitle sequence level rather than on a window level, the task can naturally
be formulated as a Multiple Instance Learning (MIL) [7, 18] problem as shown in Figure 1.
MIL is a variation of supervised learning for problems that have incomplete knowledge about
the training set’s labels. Unlike supervised learning in which each training instance has
a label, in MIL the labels are on a bag level, where each bag consists of instances. If a
bag is positive, then at least one instance in the bag is positive. If it is negative, then no
instance in the bag is positive. In our scenario, the bags are the sequences, and the instances
are features computed from fixed sized temporal windows within the temporal intervals in
which the signer is mouthing. Positive bags are from positive sequences, and negative bags
from negative sequences. Details of features are given in Section 4.4.

As an example, the word ‘snow’ occurs in 30 subtitles, thus yielding 30 positive se-
quences, each around 400 frames long. Out of these 400 frames, on average six subsets
(each 30 frames long, examples shown in blue in Figure 1) contain mouthing. With a tem-
poral window size of 13, this yields 108 temporal windows for each positive sequence, or in
total 3,240 temporal windows for all positive sequences. However, an additional challenge
is posed by the fact that ‘snow’ is only signed in 10 out of the 30 sequences. In this case,
our task is to find the 10 out of 3,240 temporal windows that contain the target sign. With
a ‘signal-to-noise’ ratio of less than 0.4%, this is a very challenging problem even when
using mouthing to cut down the search space (in this case, mouthing reduces the number of
temporal windows from 11,640 to 3,240).

The MIL proceeds in two stages: (i) finding good candidates for the target sign temporal
windows using temporal correlation scores, and (ii) refining this ‘candidate list’ using MI-
SVM. Example outputs from the two steps are visualised in Figure 1.

3.1 Multiple instance learning using discriminative search
The method for finding candidate temporal windows relies on computing temporal corre-
lation scores between the temporal windows. The input is a set of feature vectors {xi},
each representing the temporal motion of the hands and mouth over a fixed sized temporal
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window. Each vector xi is composed of blocks covering aspects of the signing of a given tem-
poral window, such as lip motion and distance between the hands. The vector is normalised
such that the dot product xi · x j between two such vectors, xi and x j, gives the temporal cor-
relation score of the ‘signals’ (lip motion, hand motion) over the two temporal windows
(Section 4.4 gives the details). The temporal correlation measures how similar the hand and
lip trajectory is between the two windows, with a value of 1 indicating perfect correlation,
and −1 indicating anti-correlation.

The task is to determine for each xi how likely it is to be the target sign. This is accom-
plished by using each xi to classify the positive and negative sequences. The idea is that if xi
is actually the sign then its correlation (i.e. xi ·x j) with some vector x j in a positive sequence
will be higher than with any vector xk in a negative sequence. To this end, for each xi all
sequences are ranked using the ‘classifier’ score xi · x j, and the performance of the classi-
fier is assessed using the area under its ROC curve (AUC). For the purpose of annotating
the vectors when computing the ROC curve, any vector in a positive sequence is deemed
positive, and any vector in a negative sequence deemed negative. A good candidate xi will
rank the positive sequences first, and thus have a higher AUC, than a poor candidate. Note,
the annotation of ‘positives’ here is noisy, since only a fraction of the windows in positive
sequences contain the sign.

In summary, we measure the ‘quality’ of each candidate temporal window using the AUC
of its ROC curve – a form of one shot-learning. The windows are then ranked according to
their AUC scores, and this ranked list is used below for initialising and training the MI-SVM.
Discussion. Before temporal correlation scores are computed, the features x is whitened to
x̂ = Σ−1/2(x−µ), where Σ is the cross-correlation matrix, x is an L2-normalised input feature
vector and µ are the means of the input feature vector. Whitening effectively ‘equalises’
the features, thus making feature variations more comparable, leading to better learning.
The above initialisation method is equivalent to training an exemplar Linear Discriminant
Analysis (LDA) classifier per temporal window. This is because whitening of the feature
space before computing temporal correlation scores is equivalent to exemplar LDA [13, 14].

This MIL initialisation method is not limited to applications in sign language – the same
idea can be used to initialise MIL in other weakly supervised tasks.

3.2 Temporal correlation based MI-SVM
In MI-SVM, given the positive and negative bags as input, a classifier w is learnt to select the
positive instances x from the positive bags by an algorithm that alternates between: (i) se-
lecting the positive instance in each bag as those with maximum score w ·x, and (ii) standard
SVM training using the selected positives and all negative instances. More formally, given
a set of input temporal windows x1, . . . ,xn grouped into bags B1, . . . ,Bm according to which
positive/negative video subsequence they belong to, where each bag BI is associated with a
label YI ∈ {−1,1}, we optimise

min
w,b,ξ

1
2
‖w‖2 + C ∑

I
ξ I (1)

s.t. ∀I : YI max
i∈I

(〈w,xi〉+b)≥ 1−ξ I , ξ I ≥ 0 (2)

where i are indices for instances and I are indices for bags.
However, a good initialisation is necessary for the algorithm to succeed. The ranked

candidate list from Section 3.1 is used to first initialise and then train the MI-SVM. In detail,
the shortlist uses the top 20% highest-ranked candidate windows as positives. The shortlist
candidates are allocated to their positive sequences and a weight vector w is learnt using the
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MI-SVM algorithm, where the top ranked candidates in each sequence are used for initiali-
sation. The candidates with maximum SVM score in each sequence form the final result. A
separate MI-SVM is trained and evaluated for each target word.

Training in this manner means that the weight vector is learnt from instances with far
fewer false positives (higher ‘signal-to-noise’). It is demonstrated in Section 5.2 that this
substantially improves its performance (compared to MI-SVM learning from all windows
directly). Figure 1 shows the selection ‘in action’ on three positive subtitle sequences.

Discussion. The weight vector w is learnt discriminatively and thus can learn to suppress
part of the feature vector. For example, if the distance between the hands carried no discrim-
inative information for a particular set of positive sequences, then this block of the feature
vector need not be selected. The vector w is a stronger classifier than the exemplar LDA
classifier above, since w uses multiple positive samples for training, rather than being con-
structed from only a single sample.

4 Implementation Details
This section describes the implementation details of how training data (positive/negative
sequences, and a feature vector based on upper-body joint locations and mouth features) are
automatically generated from subtitles and video material.

4.1 Text processing
Each subtitle text consists of a short text, and a start and end frame indicating when the
subtitle is displayed. The subtitles are stemmed (common inflections e.g. “s”, “ed”, “ing”
are removed) and stop words are filtered away.
Positive sequences. A positive sequence is extracted for each occurrence of the target word
in the subtitles. Since the alignment between subtitles and signs is very imprecise due to
latency of the signer (who is translating from the soundtrack) and differences in language
grammar, some ‘slack’ is padded to the sequence window. Given a subtitle where the target
word appears, the frame range of the positive sequence is defined as from the start of the
previous subtitle to the end of the next subtitle. This results in sequences of about 400
frames in length. In contrast, signs are generally 7–13 frames long.
Negative sequences. Negative sequences are extracted by searching for subtitles where
the target word does not appear. This yields on average about 100,000 negative temporal
windows per video.

4.2 Large-scale human co-segmentation and joint tracking
In previous work [22] we developed a fully automatic arm and hand tracker that detects
joint positions over continuous sign language video sequences. However, the method relies
on accurate signer foreground segmentations, which are challenging to determine since the
colours of the foreground and background are often similar. In this work we improve upon
this segmentation method by using additional freely available information, namely that the
same TV programmes are broadcast with and without an overlaid sign language interpreter,
as shown in Figure 4. If the two videos can be perfectly aligned, and any noise can be
removed, then this provides a very strong cue for segmenting the foreground.

This is however not straightforward as the two videos differ greatly in broadcast quality
(high definition vs standard definition), which results in many spurious edges in the differ-
ence image. We tackle this by finding edges in the original video and filtering these away
from the difference image. The difference image then undergoes a set of image process-
ing operations that produce a clean foreground ‘clamp region’ shown in Figure 4(c). This
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– =

(a) (b) (c) (d)

Figure 4: Large-scale human co-segmentation. The signer-overlaid frame (a) and original frame (b) are subtracted
after alignment, resulting in a difference image (c) that is used as a foreground clamp (in yellow) and to generate
GrabCut constraints. (d) shows the final result.

per-frame clamp region is used (i) as a foreground clamping region in GrabCut [24], (ii) for
building an accurate video-wide global foreground colour model, and (iii) for partially re-
placing the colour posterior unary in frames with similar foreground and background colours.
A secondary GrabCut unary is also computed based on the background colour model of the
video without an overlaid signer.

These improvements yield near-perfect segmentations similar to Figure 4(d) for all signed
TV broadcasts, which significantly reduces the search space when tracking the signer’s
upper-body joints. Example co-segmentation results are available online.

As in Pfister et al. [22], the segmentation is used to ‘cut out’ the signer from the video.
A colour posterior that gives the likelihood of each pixel in the segmented region being
skin/torso/background is then computed. This feature representation is used as the input to a
Random Forest classifier, which is trained on hours of tracking output from an accurate, but
slow and semi-automatic, tracker [4]. This yields an automatic real-time upper-body tracker
that estimates joints accurately on unseen signers. The output we use is the position of the
head and hands in every frame.

4.3 Mouthing classifier
Facial landmarks are detected using the method of Everingham et al. [10]. A similarity
transform is then applied to the mouth feature points to yield a scale, rotation and translation
normalised mouth patch. A binary Chi-squared kernel SVM is trained to classify each such
patch as mouthing / non-mouthing using Local Binary Pattern (LBP) [19] features with cell
size 8 extracted from the mouth patch of size 32× 52 pixels. The dimensionality of the
feature vector is 1,392 per frame. At test time the SVM output scores are thresholded to
yield windows in which mouth motion is detected (blue areas in Figure 1). Training details
and performance are given in Section 5.2.

4.4 Feature vector computation
For each frame we have the position of the signer’s head and hands (from Section 4.2),
and a descriptor for the mouth shape (a 128-dimensional SIFT descriptor [17]). For each
temporal window, a number of feature blocks are computed based on the trajectory of the
hands: (i) the relative (x,y) coordinates of each hand compared to the position of the head,
(ii) the differences (x right−x left,y right−y left) in coordinates between the two hands, and (iii)
a vector describing the direction and magnitude of motion between the first and last frame
in the temporal window: (x last− x first,y last− y first). In addition, the feature vector contains
a block for the SIFT descriptor of the mouth patch for each frame in the temporal window.
Each feature block is then L2 normalised so that xi · x j becomes the temporal correlation
between two temporal windows with feature vectors xi,x j.

The feature dimension per frame is 134 out of which 128 is a SIFT describing the mouth,
and the remainder describes the joints. For a temporal window size of 13, the total feature
vector dimensionality is 1,746 (including two vectors giving the direction of motion between
the first and last frame of each hand). The entire feature vector is a concatenation of all the
L2 normalised blocks, and this is then L2 normalised.
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5 Experiments
First the dataset and evaluation measure are described (Section 5.1); then the performance
of the mouthing classifier and the helpfulness of mouthing information is evaluated (Sec-
tion 5.2); and finally the results are compared to the state of the art (Section 5.3). Sample
videos are available online.1

5.1 Dataset, evaluation measure and computation time
The sign extraction dataset consists of 35 high-definition TV broadcast videos, with 17 dif-
ferent signers, and in total 30 hours of data. Each video typically contains between 40K and
85K frames of sign-interpreted video content from a variety of BBC TV programmes. All
frames of the videos are automatically assigned segmentations, joint labels and mouthing
scores using the methods described in Section 4.2 and 4.3.

The 1,000 most frequently occurring words in the subtitles are selected, and the algorithm
of Section 3 is used for each of these to extract the corresponding signs.
Manual ground truth. A set of 41 subtitle words (animal, antique, asian, bank, beacon, bear, beautiful,

beef, bike, blood, buy, chinese, chocolate, epigenome, fake, feel, gram, heart, heat, industry, jelly, jewish, kill, market, milk, pay,

reindeer, rugby, school, science, sell, simple, snow, song, sound, target, vision, war, winter, work, year) are selected at
random from the 1,000 most frequently occurring words, and for these the ground truth sign
temporal windows are annotated for all positive sequences for that word. The number 41 is
chosen for comparison purposes, as Buehler et al. [3] annotated the same number of words.
Mouthing classifier train/test sets. The mouthing SVM classifier is trained on mouth
LBPs of five unseen signers that are not in the sign extraction dataset. Mouths were manually
annotated as either open or closed in 800 frames for each signer (4,000 frames in total).
Testing for the mouthing classifier is conducted on three randomly chosen signers in the sign
extraction set, each with 200 manually annotated frames (600 frames in total).
Evaluation measures. Given an English word, the goal is to identify many examples of
the corresponding sign. We use two evaluation measures: sign-level (coarser) and instance-
level measures. In the sign-level measure used by Buehler et al. [3], the output is deemed a
success if at least 50% of retrieved candidates (maximum one per subtitle sequence) show the
true sign (defined as a temporal overlap of at least 50% with ground truth). In the instance-
level measure, we report precision and recall computed per word and then averaged across
words. Precision measures the percentage of retrieved windows that contain the correct sign,
whereas recall measures the percentage of sign instances that are retrieved.
Computation time. The following computation times are on a single core of a 2.4GHz
Intel Quad Core I7 CPU. Segmentations, joints and mouthing classifier scores for one frame
are computed in 0.3s (3fps). The runtime for the MIL initialisation step is on average 20s per
subtitle word, and MI-SVM converges on average in 1min 30s, totalling 1min 50s per word.
Initially there are on average 4,000 temporal windows, of which the MIL initialisation step
returns around 800 as a shortlist.

5.2 Mouthing classifier and advantages of using co-occurrences
In this subsection the performance of the mouthing classifier is evaluated, and the advantages
of using mouthing for sign extraction are explored.
Mouthing classifier. Figure 3 shows the ROC curve for the mouthing classifier when
trained and tested on different signers as described in Section 5.1. As the ROC curve demon-
strates, the classifier gives a quite reliable measure of whether the mouth is open or closed.
On average, 71.2% of the search space is discarded using this method.

1http://www.robots.ox.ac.uk/~vgg/research/sign_language
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Advantages of using co-occurrences. The overall average precision is 57.1% and recall
is 78.0%. With the sign-level evaluation measure, the performance is 92.7%. We achieve
good results for a wide variety of signs: (i) signs where the hand motion is important (e.g.
‘snow’), (ii) signs where the hand shape is particularly important (e.g. ‘jewish’ where the
hand indicates an imaginary beard), and even (iii) signs which are performed in front of the
face (e.g. ‘pork’), which makes detecting mouth motion difficult. MI-SVM suppresses the
mouth part of the feature vector by assigning it a lower w weight.

The importance of the components and stages of the algorithm is evaluated next. If
the mouthing classifier is not used for cutting down the search space, some signs can be
detected, but the overall results are much poorer. This is reflected in the instance-level eval-
uation measure: average precision over 41 words drops to 17.8% and recall to 39.3%. If the
initialisation step is omitted, and MI-SVM is instead initialised with all windows from the
positive sequences (after search space reduction), results drop to 5.7% precision and 2.5%
recall. We have also qualitatively evaluated our method over the 1,000 words. For more than
half of the words, our method returns the correct sign one or more times in the top 10 final
temporal windows selected by MI-SVM.

5.3 Comparison to previous publications
Direct comparisons to previous works are not possible since we do not have access to the
same TV programmes with the same signs performed by the same signer. Moreover, previous
work used standard-definition TV broadcasts, where the resolution was not good enough to
detect facial feature points reliably. However, we show that our results are competitive when
performing similar experiments to those in Buehler et al. [3] with a similar-sized vocabulary.

Using the sign-level evaluation measure, our 92.7% success rate far exceeds Buehler et
al.’s rate of 78% on the same number of signs. However, we must also point out that this
measure is only concerned with recall, and not precision. In fact, although our method has a
good precision, it has lower precision (i.e. higher false positive rate) on the 41 word test set.
This is only to be expected given that we are using far less discriminative features than [3]
who also use hand shape and hand orientation. However, our method is much simpler both
in terms of features and learning framework, and is extremely fast (≈2min/word).

Cooper and Bowden [5] detect the signs for 53.7% of 23 words in a 30 min TV broadcast.
The results are not directly comparable as different performance measures are used, but we
detect 92.7% of nearly twice as many words at a fraction of the computational cost.

6 Conclusion
We proposed a framework for automatically learning a large number of signs from sign
language-interpreted TV broadcasts. Our method exploits co-occurrences of mouth and hand
motion to substantially improve the ‘signal-to-noise’ ratio in the correspondence search.
Moreover, we proposed a principled method for initialising the correspondence search that
significantly improves performance. We achieve superior results to those in previous work [3]
with much simpler features and a much lighter learning framework. The ideas of exploiting
co-occurrences and obtaining MIL temporal correlation candidates by discriminative learn-
ing from a single exemplar window could be applied to a variety of fields where weak super-
vision is available, such as learning actions [16], gestures and names of TV characters [11].
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Figure 5: Example sequences for the signs “snow” (top) and “vision” (bottom) performed by two different
signers and learnt automatically.
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