Inferring Ongoing Human Activities Based on Recurrent Self-Organizing Map Trajectory
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Automatically inferring ongoing activities is to enable the early recogni-
tion of unfinished activities, which is quite meaningful for applications,
such as online human-machine interaction and security monitoring. State-
of-the-art methods use the spatio-temporal interest point (STIP) based
features as the low-level video description to handle complex scenes [1,
2, 3]. While the existing problem is that typical bag-of-visual words
(BoVW) focuses on feature distribution but ignores the inherent con-
texts in sequences, resulting in low discrimination when directly deal-
ing with limited observations. To solve this problem, the Recurrent Self-
Organizing Map (RSOM) [4], which was designed to process sequential
data, is novelly adopted in this paper for the high-level representation of
ongoing activities. The innovation lies that observed features and their
spatio-temporal contexts are encoded in a trajectory of the pre-trained
RSOM units. Additionally, a combination of Dynamic Time Warping
(DTW) distance and Edit distance, named DTW-E, is specially proposed
to measure the structural dissimilarity between RSOM trajectories.

RSOM Trajectory: Since the RSOM constitutes a direct extension
of SOM, we start from SOM. SOM is to map the data from an input space
V1 onto a lower dimensional space Vz (a map) in such way that the topo-
logical relationships in V; are preserved and the SOM units approximate
closely the probability density function of V;. Suppose each unit i in SOM
is associated with a weight vector w; = [wj1, Wj, ..., win] € R" with the
same dimension as the input vector x = [x1,%2,...,x,]7 € R”. Learning
process that leads to self-organization on a map can be summarized as,

(i) The feature vector x(¢) is input, then its best matching unit (bmu)
on the map is found by computing the minimum distance as:

6]

bmu = argmin{||x(t) —w; ()| }
i€V,

(i1) The winner bmu and its neighbors on the map have their weights
wi(t) updated towards x(¢) as:

wit +1) =wi(t) + a(t) - Ny - [P () —wi(0)| 2
where || - || denotes the Euclidean norm, o(t) = o; - (ch/oci)Tm/Tm €
[0,1] is the learning rate, where the o; and ay denote the initial rate and
final rate. T(i) = {1,2,...,Tax} Where Ty, is iteration number. Np, ;
is called neighborhood function and defined over the units on the map.
Typically, Ny = eXp{—||rpmu — ril|> /262 }, where rp, € R? and r; €
R2 are the location vectors of unit bmu and i on the map, and ¢ defines
the Gaussian kernel width.

SOM is not originally designed to accommodate the time series, its
temporal extension RSOM is hence adopted here to learn the temporal
contexts in activity sequences. It is to utilize both the feature vectors
before x(¢) and x(¢) itself to search the best matching unit of x(¢). This
is done by associating the following recursive equation to each unit i to
compute the difference vector y;(¢):

yi(t) =2 |x(@) =wi(@)[[+ (1 =2) -y;(r = 1) ©)

where 0 < A < 1 is a factor determining the influence of earlier difference
vectors on the current x(z). When A is close to 0, the system of Eq. (3)
involves a heavy backward memory, whereas when A is near to 1, Eq. (3)
describes a slight memory. Now equations of RSOM for searching bmus
and adapting weights are as follows,

bmu = argmin{|ly; (1) ||} @
eV
wit+1) = wi(t) + a() - Nomu,i - [y: (1) )

Then, we introduce how to map the input feature sequence to a time-
varying trajectory of bmus. Supposing that an M x M map is learned
after a fixed number of iterations using Eq. (3)(4)(5). For simplification,
the one-dimensional value b of the original coordinate bmu € R2, ie.,

local features on one frame

pre-trained RSOM

inner-frame RSOM trajectory

Figure 1: Iluminations of a pre-trained 4 x 4 RSOM and the assumed trajectory
(12, 11, 11, 6, 6, 13, 4, 1) of local features (yellow points). Note that the bmus
order in the trajectory is based on their image locations (detected order): from left
to right, then from up to down.

Figure 2: Samples of UT-Interaction (a, b) and Rochester Activities dataset (c).

b = bmu(2) x M+ bmu(1) € [1,M?], is used as the location index in the
final trajectory. During video input at time #, STIP based local features
are first extracted on the current frame based on above equations. Then
feature vectors search their bmus on the map, and compose an inner-frame
trajectory b. Finally, b is used to generate the inter-frame trajectory Trj.

by ={bilk=1,2,...K(f)}:Trj(t) = {bs|f = 1,2,..F(1)} ~ (6)

where K (f) is the number of local features on the fth frame and it changes
with different frames. F(¢) is the frame number until time ¢. Trj(¢) is thus
used as a high-level representation of the current observed activity.

DTW-E distance: The structure of RSOM trajectory is clear and spe-
cial that each subset on one frame (inner-frame) contains the human shape
information and the whole sequence (inter-frame) contains the long-range
temporal relationships. Therefore, how to reasonably measure the likeli-
hood between RSOM trajectories for pattern classification arises another
problem. To solve this, a hierarchical distance based on the combination
of DTW distance and Edit distance, named DTW-E, is specially defined
(implementation of this algorithm is described in our paper).

Experiments and Conclusions: Two real-world datasets (Figure 2)
with different characteristics, complex scenes [5] and inter-class ambi-
guities [6], serve as sources of data for evaluation. Experimental results
based on kNN classifiers confirm that our approach can infer ongoing hu-
man activities at any stage with high accuracies.

Our conclusion is that our approach can make efficient inferences
even with complex scenes and inter-class ambiguities. It hence confirms
the ability of RSOM trajectory to extract sufficient discrimination. More-
over, the RSOM trajectory with the advantage of before-after indepen-
dence is proved more suitable to the recognition of unfinished patterns.
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