
SHARMA AND JURIE: EFFICIENT SVM WITH HISTOGRAM INTERSECTION KERNEL 1

A Novel Approach for Efficient SVM
Classification with Histogram Intersection
Kernel

Gaurav Sharma1

gaurav.sharma@unicaen.fr

Frederic Jurie
frederic.jurie@unicaen.fr

GREYC CNRS UMR6072
University of Caen
Boulevard Marechal Juin
14032 Caen, France

Abstract

The kernel trick – commonly used in machine learning and computer vision – enables
learning of non-linear decision functions without having to explicitly map the original
data to a high dimensional space. However, at test time, it requires evaluating the kernel
with each one of the support vectors, which is time consuming. In this paper, we propose
a novel approach for learning non-linear SVM corresponding to the histogram intersec-
tion kernel without using the kernel trick. We formulate the exact non-linear problem in
the original space and show how to perform classification directly in this space. The
learnt classifier incorporates non-linearity while maintaining O(d) testing complexity
(for d-dimensional input space), compared to O(d×Nsv) when using the kernel trick.
We show that the SVM problem with histogram intersection kernel is quasi-convex in
input space and outline an iterative algorithm to solve it. The proposed approach has
been validated in experiments where it is compared with other linear SVM-based meth-
ods, showing that the proposed method achieves similar or better performance at lower
computational and memory costs.

1 Introduction and related work
The two main ingredients of most of the successful approaches for visual recognition are (i)
the representation of images by distributions (i.e. histograms) of visual features e.g. bag-of-
features [1] and HOG [2] and (ii) the use of margin maximizing classifiers such as support
vector machines (SVM) [15]. Systems built on them have led to state-of-the-art performance
on image classification [8, 9, 16] and object detection [5, 7, 21].

The standard formulation for learning classifiers is the SVM primal formulation (Eq. 1,
see [15] for more details) which allows the learning of a linear classification boundary in the
space of (images represented as) distributions. However, general visual tasks e.g. scene or
object based classification of unconstrained images, are very challenging due to the presence
of high variability due to viewpoint, lighting, pose etc. and linear decision boundaries are
not sufficient. Many competitive methods in image classification [3, 9] and object detection
[7, 21], thus, use non linear classifiers. Such non linear classifier are obtained by using the
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kernel trick with the dual formulation (Eq. 2) of the SVM. The SVM dual formulation only
requires the dot products between the vectors and so a nonlinear kernel function K(x1,x2)
is used which implicitly defines a (non linear) mapping φ : Rd → F of input vectors to a
high (potentially infinite) dimensional feature space with K(x1,x2) = 〈φ(x1),φ(x2)〉. With
the kernel trick a linear decision boundary in the feature space is learned which corresponds
to a non linear decision boundary in the input space. Such kernel based SVMs have been
shown to improve the performance of linear SVMs in many visual tasks (e.g. classification
and detection) by a significant margin e.g. [7, 9, 21].

While the dual formulation allows the learning of non linear decision boundaries, the
computation of classifier decision for a test vector x, f (x) ∝ ∑i ciK(x,xi) (ci being the model
parameters), depends on kernel computation with all support vectors {xi ∈Rd |i = 1 . . .Nsv}.
Hence, the test time and space complexities becomes O(d×Nsv) vs. O(d) for the linear case
i.e. f (x) = wT x. In practice, Nsv is of the order of number of training examples, and this
leads to significant cost in terms of time and space. Such high cost makes it impractical for
kernel based classifiers to be used for large scale tasks e.g. object detection, in which the
classifier has to be applied to more than 100,000 windows per image [7, 21] or large scale
image classification [13] with thousands of classes. Similarly, it makes them impractical to
use with limited capability mobile devices in consumer applications e.g. smart-phone/tablet
applications for object or landmark recognition or for real time object based video editing.

The second component of successful approaches for visual recognition, relies on the
use of distributions of features for representing the images. The two of the most popu-
lar/successful of such features being the Histogram of Oriented Gradients (HOG) [2, 5]
capturing shape information and bag-of-features [1, 17] capturing the appearance. The re-
lated histogram intersection kernel [18] ∑d

xdyd
|xd ||yd |

min(|xd |, |yd |) ∀ x,y ∈ Rd has thus been
a natural choice, in visual tasks, for measuring the similarity between image representations
x and y (e.g. [6, 9]). Being positive definite, it can be used directly as a kernel with SVM.
However, recall that using kernel SVM leads to high i.e. O(d×Nsv), time and memory re-
quirement as a result of using the kernel trick. This has led to many recent works proposing
faster ways to compute the classifier and/or the decision function corresponding to the his-
togram intersection kernel e.g. [11, 12, 20].

Traditionally, the kernel based classifiers having led to the best results on image classifi-
cation problems with the standard bag-of-features [1, 17] image representation (e.g. the high
ranking entries of the PASCAL VOC 2007 competition [3]) used classifiers based on non-
linear kernels with support vector machine (SVM) classifiers [15]. While the kernel-SVMs
perform well they incur a very high testing cost, as explained above. To overcome this limi-
tation, Maji et al. [12] showed that SVM classifier decision corresponding to the histogram
intersection kernel can be computed in logarithmic (wrt Nsv) time and also proposed a con-
stant (wrt Nsv) time and space approximation for the same. More recently progress has been
made in approximating the mapping to high dimensional feature spaces corresponding to
commonly used kernels e.g. Maji and Berg [11] approximate the feature map corresponding
to the intersection kernel and Vedaldi and Zisserman [20] approximate general additive ker-
nels. The advantage of doing such mappings is that they allow the use of linear classification
methods with the feature mapped vectors, but the drawback is that each data point has to be
explicitly mapped, which has a cost.

In this paper, we take an (as far we know) unexplored route and show that it is possible
to learn a nonlinear classifier implementing the histogram intersection kernel directly in the
input space without using the dual formulation and the kernel trick, while achieving similar
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classification performance. We work with the primal optimization problem (Eq. 1) and view
the kernel as a parametrized scoring function inducing a nonlinear boundary in the input
space. As a result, the problem we solve becomes non convex, but remains quasi convex.
To solve the problem, we outline an approximate optimization algorithm which starts by
solving a, highly smoothed, convex approximation of the objective and then successively
solves less smoothed objectives, initialized with the solution of the previous one, converging
to the current objective. In practice, however, we find that a simple stochastic sub-gradient
descent solver, working with the sub-gradient of the non convex objective, with very small
steps and multiple passes over the data achieves competitive performance. While with the
current approaches [12, 20] two costs are incurred at test time, (i) mapping the test vec-
tor and (ii) computing O(d′) dot product, in higher d′-dimensional feature space, with the
proposed method we only need to perform O(d), with d < d′, operations in original space.
Along with being conceptually interesting, our method thus leads to reduced space and time
complexities.

2 Approach
A standard formulation for learning linear classifier is the SVM primal optimization,

min
w

{
λ

2
||w||22 +

1
|It |∑i

ξi

}
, s.t. yiwT xi ≥ 1−ξi and ξi ≥ 0, (1)

where w is the normal to the linear decision hyperplane and {(xi,yi)|xi ∈ It ,yi ∈ {−1,+1}}
are the training vector and label pairs. The optimization problem is convex and well studied,
and many standard libraries (e.g. liblinear [4]) exist for solving it. However, only a linear
decision boundary (i.e. a hyperplane parametrized by w) can be learnt with this formulation.
In general the classes may not be separable by linear boundaries and to allow learning more
complex nonlinear decision boundaries, the dual formulation of the problem, given by

max
α

{
∑

i
αi +

(
1
2
− 1

λ

)
∑
i, j

αiα jyiy j xT
i x j

}
, s.t. 0≤ αi ≤

1
|It |

. (2)

is used. The dual formulation allows the use of the kernel trick, where a kernel function
is defined as K(xi,x j) = 〈φ(xi),φ(x j)〉 with φ : Rd →F being a feature map, mapping the
vector x ∈Rd in the input space to a high (potentially infinite) dimensional feature space F ,
where the classes are hoped to be linearly separable. Since in the dual formulation (Eq. 2)
only the dot products (i.e. the kernel functions) are required, φ is only implicitly defined via
the kernel function (see [15] for detailed discussion).

Towards the goal of learning a nonlinear classifier in input space, we start with the SVM
problem (unconstrained formulation equivalent to Eq. 1) in feature space, obtained by map-
ping the input space vectors using the feature map φ : Rd →F ,

Lφ (wφ ) =
λ

2
||wφ ||22 +

1
|It |∑i

max(0,1− yi〈wφ ,φ(x)〉) (3)

where wφ ∈ F denotes the (parameters of the) linear decision boundary in the feature space.
While noting that exact pre-images of vectors in feature space might not exist in general [15],
we assume that the pre-image of the vector wφ exists i.e. ∃w ∈ Rd such that wφ = φ(w) (in
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case an exact pre-image does not exist, consider w to be the best approximation of the pre-
image of wφ ). We can now write the objective function as,

L(w) = Lφ (wφ ) =
λ

2
||φ(w)||22 +

1
|It |∑i

max(0,1− yi〈φ(w)φ(x)〉). (4)

Although we are working with non-negative bag-of-features histograms {x ∈ Rd
+} in

input space, we expect the vector w to be negative as well in general. We could see the w
vector as a combination of two non-negative vectors w = w+−w−∀w+,w− ∈Rd

+ where the
w+ (w−) capture the discriminative information supporting the positive (negative) class.

We now focus our interest on the feature map corresponding to the generalized intersec-
tion kernel i.e.

〈φ(x),φ(y)〉= K(x,y) = ∑
d

xdyd

|xd ||yd |
min(|xd |, |yd |) ∀ x,y ∈ Rd . (5)

With this map, the regularization term in Eq. 4 becomes

||φ(w)||22 = 〈φ(w),φ(w)〉= K(w,w) = ∑
d

w2
d

|wd |2
min(|wd |, |wd |) = ∑

d
|wd |= ||w||1, (6)

and part of the second term can be written as yi〈φ(w),φ(x)〉 = yi f (w,xi) with f (w,x) =
K(w,x) acting like a scoring function inducing a non-linear decision boundary in the input
space.

Hence, the complete feature space optimization can be written in input space as

L(w) =
λ

2
||w||1 +

1
|It |∑i

max(0,m− yi f (w,x)) (7a)

f (w,x) = ∑
d

wd

|wd |
min(xd , |wd |) (as x ∈ Rd

+) (7b)

where we have replaced the constant 1 (in the hinge loss term) with a free variable m as a
unit distance in feature space, in general, does not correspond to a unit distance in the input
space.

Minimizing Lφ w.r.t. wφ in the feature space is a convex problem. It is solved using
the kernel trick which evades the need of explicitly specifying φ . However, at test time,
to compute the prediction for a test image, computing kernels with all the support vectors
(which are of the order of number of training images) is required.

In this paper, instead of minimizing the convex objective Lφ (Eq. 4) in feature space, we
propose to directly minimize the non linear and non-convex objective L (Eq. 7a). Towards
this goal we now analyze the nature of the objective function L.

2.1 Quasi convexity of the objective function
The objective function we propose to solve i.e. L(w), ∀w ∈ Rd (Eq. 7a) is quasi-convex.
Quasi-convexity requires that the function is only locally flat, more formally all the level
sets of the function Sα = {x| f (x) ≤ α}∀α ∈ R are convex sets. The `1 regularization term
is convex and hence quasi convex (QC). To see the QC of the second term we note that it
is a max over per example loss. m− f (w,x) is QC (as a function of w with fixed x) as it
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f(x,w) =  (w
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Figure 1: The scoring function for one dimension (left) and in the positive quadrant in two
dimensions (right).

x
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f(w) = 

θ = arctan(x)

w

Relaxation to linear decision 
function by varying parameter t

t 

t = 1
Linear

t = x
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f(w) = min(x, w)

f(w) = w
 
x

Figure 2: The linear decision function (green) can be seen as a convex relaxation of the
histogram intersection like decision function (blue). If we introduce a parameter t ∈ [x,1],
we can construct series of relaxations of the intersection like decision function converging
to the convex linear decision function as t varies from x to 1, shown in red in here. Only the
first quadrant is shown, the graphs in the third quadrant are obtained by mirroring about the
two axes i.e. all functions are odd functions with f (−x) =− f (x).

is piecewise affine and monotonic (albeit not strictly). Fig. 1 shows the decision function
f (w,x) for one and two dimensional spaces as a function of w. Constant function is also
QC and hence the per example loss, being a max over QC functions is also QC. As weighted
sum of QC functions with positive weights is also QC, the loss over all examples is thus QC.
Hence, we have to minimize a QC objective L (Eq. 7a) in input space.

2.2 Linear decision function as a convex relaxation

A standard approach to deal with non-convex optimization is to resort to approximation and
solve a convex relaxation of the objective instead. Fig. 2 shows how a series of relaxations of
the intersection based decision function (Eq. 7b) can be constructed, with final convergence
to linear, and hence, convex decision function (convex optimization problem). An algorithm
could, thus, be designed to solve the nonlinear optimization by successive smoothing. The
algorithm would proceed by first solving a highly smoothed convex problem (correspond-
ing to linear decision function) and then iteratively solving less smoothed versions, of the
objective, initialized with the solution of previous ones.
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Algorithm 1 Stochastic gradient descent for learning nSVM
1: Initialize: w = 0, r, λ and m
2: for iter = 1, . . . ,100 do
3: S← random_shuffle(It )
4: for all i ∈ S do
5: wd ← wd + ryi 1(yi f (xi,w)< m) 1(abs(wd)< xid) ∀ d dimensions
6: wd ← sign(wd) max(0,abs(wd)− rλ ) ∀ d dimensions
7: end for
8: if iter = 50 do r← r/10 end if
9: end for

The intersection decision function (for single dimensional feature x∈R) could be relaxed
with the following function, parametrized by t,

ft(w,x) =
{

wx/t if w≤ t,
w tan

{
tan−1(x).(t− x)/(1− x)

}
otherwise, (8)

for x∈R+ (the function is odd i.e. f (w)=− f (−w) ∀w∈R−). The parameter t ∈ [x,1] (x≤ 1
as it is a component of `1 normalized BoF histogram) controls the amount of smoothness
on the objective function, Fig. 2 illustrates the smoothed versions of the function for one
dimensional w. We have no smoothing when t = x, while t = 1 leads to heavily smoothed
linear decision function. When the decision function is linear i.e. t = 1, the optimization
problem becomes convex.

When using this function for the sum of hinge losses for all d dimensional examples (i.e.
many different x∈Rd) t is replaced with max(t,xd) for each dimension of each example. The
discussion above, pertaining to the convex relaxation of the objective, changes accordingly.

2.3 Stochastic subgradient based solver
In practice, we find that a simple stochastic solver using the subgradient of the objective
function, Eq. 7a, performs well in practice. Eq. 7a can be seen as a `1 regularized hinge
loss minimization, albeit with non-convex scoring function. `1 regularization with convex
losses is a well studied topic (e.g. [14]). While the problem is non-convex, systems learned
with `1 regularization perform well in practice (and are specially interesting for their sparsity
inducing effects). We tried a stochastic (sub) gradient based algorithm, outlined in Alg. 1
(1(c) = 1 if condition c is true, 0 otherwise), to solve Eq. 7a. We formulated the update
steps analogous to other recent work in computer vision using stochastic gradients [13, 16].
There are two update steps, first (line 5, Alg. 1) updates w based on subgradient of the loss
(denoted Ls) of the current example x, given by (for each coordinate)

∇ Ls(xd) =

{
−yi if yi f (w,xi)< m and abs(wd)< xd
0 otherwise (9)

and the second update (line 6, Alg. 1) is based on the sub gradient of the regularization term,
simply the sign of w for each dimension. We clip the update step due to the second term
to avoid zero crossing. The two step update in Alg. 1 does not correspond to the accurate
sub gradient of the objective in Eq. 7a (see §2.1 in [14] for full subgradient). We assume
λ � 1, which is true in practice, and thus ignore some effects of λ in the subgradient based
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updates. We find that the proposed algorithm performs well in practice. We choose to use
this algorithm for its simple implementation and report results using it in the experimental
section.

3 Experiments
We now report results for the nonlinear SVM learned in the original space directly using the
Alg. 1. In the following we call the proposed method non-linear SVM as nSVM. We report
results on experiments designed to study the parameter sensitivity, speed and memory gains
and the ability to achieve competitive performance.

3.1 Experimental setup
We report results on two standard computer vision benchmark datasets, (i) PASCAL VOC
20071 object image classification dataset [3] with 20 classes and 9963 images and (ii) Scene-
15 database2 [9] with 15 scene classes with 4492 images. We report results with standard
protocol i.e. train+validation sets for training and test set for reporting perfor-
mance for PASCAL VOC 2007 dataset and 100 random images per class for training and
rest for reporting performance for Scene-15 dataset, and evaluation metrics for the datasets
i.e. per-class and mean average precision (AP) for PASCAL VOC 2007 dataset and per-class
and mean (over classes) accuracy for Scene-15 dataset.

We fix the image representation and compare classifiers (after feature mapping) on top
of the representation. The image representation used (for both the proposed and compared
methods) is the bag-of-features representation. We extract dense SIFT [10] features at 4
scales with a step size of 3 pixels with grayscale images. We learn a visual word vocabulary
of size 1024 using k-means algorithm with 500,000 randomly sampled SIFT features from
the training images. We use standard spatial pyramid representation [9] with the vector
quantized features. We use 1× 1, 2× 2 and 3× 1 (4× 4) spatial cells for PASCAL VOC
2007 (Scene-15) dataset.

We compare with a closely related, recently proposed method of explicit feature maps by
Vedaldi and Zisserman [20] which computes finite dimensional mappings corresponding to
the histogram intersection kernel. Such mappings thus enable us to compute linear classifiers
in the mapped space. It was shown by Vedaldi and Zisserman [20] that this feature mapping
obtains better results that the one by Maji and Berg [11]. We use 3D features for the explicit
feature map as this gave the best result in [20].

We use VLFeat library [19] to (i) compute SIFT descriptors, (ii) do k-means and (iii)
compute the feature map corresponding to Vedaldi and Zisserman’s method [20]. We use
liblinear [4] (with `2 regularized `1 loss option) to learn SVM with the feature mapped vec-
tors.

3.2 Performance comparison
Fig. 4 and 3 show the per class performances of our method vs. explicit feature map [20]
with linear SVM, on the two datasets. We get similar performance, on an average, compared
to feature maps with mean average precision of 50.5 (present) vs. 49.7 (feature map) on

1http://pascallin.ecs.soton.ac.uk/challenges/VOC/voc2007/
2http://www.featurespace.org/data.htm
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Figure 3: The accuracies for different classes (mean and std over 10 splits) of the Scene 15
dataset [9] for the proposed method (nSVM) and the explicit feature mapping of Vedaldi and
Zisserman [20] (for histogram intersection kernel with linear SVM).
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Figure 4: The average precisions for different classes of the Pascal VOC 2007 dataset [3]
(image classification task) for the proposed method (nSVM) and the explicit feature mapping
of Vedaldi and Zisserman [20] (for histogram intersection kernel with linear SVM).
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Figure 5: The average precisions for different values of (left) regularization parameter λ

and (right) hinge loss parameter m, for a typical convergence of the proposed method.

Time Memory
Secs Speedup Kbytes Reduction

Vedaldi and Zisserman [20] 3.8 1 (ref) 448 1 (ref)
Nonlinear SVM (present) 0.2 19× 64 7×

Table 1: Testing time, for aeroplane class of Pascal VOC 2007 dataset [3] (on the full test
set), averaged over 10 runs and memory usage (for keeping model in memory) comparison
for the proposed model and the feature mapping method of Vedaldi and Zisserman [20].
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PASCAL VOC 2007 dataset and mean class accuracy (over 10 random runs) of 84.0± 0.5
(present) vs. 84.7±0.4 (feature map). We conclude that our method for learning a classifier
directly in original space achieves competitive performance.

3.3 Test time and space complexities
We compare the test time speedup and the memory usage reduction (Tab. 1) compared to
the explicit feature map [20] which is already more than three orders faster than the kernel
SVM (there are O(103) support vectors and the scoring a new image/vector requires com-
puting the histogram intersection kernel with each of them). We used the 3D features for
explicit feature maps, as they were reported to give best results, which results in features of
7d dimensions for d-dimensional bag-of-features with spatial pyramid. While our method
performs a linear scan on the d-dimensional features to calculate the test score (Eq. 7b), for
explicit feature maps we have to, first, compute the mapping to 7d space and then compute
a dot product in that space. Hence the model is 7× bigger for explicit feature map com-
pared to our method and (empirically) our method is about 19× faster than explicit feature
maps with linear SVM (the time is only due to classifier score computations and excludes
the bag-of-features construction time for both methods). The training is also fast e.g. it takes
about 45 secs to train a model for one class of PASCAL VOC 2007 dataset. We resorted to
a conservative training strategy with multiple passes over the data and our training time can
be arguably improved quite a bit.

3.4 Sensitivity to parameters
Fig. 5 shows the test average precision (AP) for the aeroplane class of the PASCAL VOC
2007 dataset with the iterations for the learning algorithm. We found that having a higher
rate initially and then annealing by decreasing the learning rate midway was helpful for
convergence, notice the convergence before and after iteration 50. The method converges for
a range of λ and m parameters. While, the convergence happens for a range of values, cross
validation is suggested for competitive performance.

4 Conclusion
Making non-linear classification efficient is advantageous for many applications specially
with large number of images and categories e.g. large scale classification, and with limited
computing resources e.g. in consumer devices like cameras or smart phones.

In the present paper we proposed a method for learning non-linear classifier correspond-
ing to the histogram intersection kernel directly in the original space i.e. without using the
kernel trick or mapping the features explicitly to high dimensional space corresponding to the
kernel. We formulated the non-linear optimization in the original space which corresponds
to the linear optimization problem in the high dimensional feature space. We analyzed the
objective function and proved that it is quasi-convex. We outlined an algorithm to optimize
the quasi convex objective using successive relaxations, starting from a highly smoothed
convex objective and iteratively solving less smoothed versions of the objective. We showed
experimentally that a stochastic algorithm with subgradients works well in practice. Com-
pared to a recent method for making non linear classification efficient, the proposed method
is 19× faster and requires 7× less memory.
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As future work, we plan to improve the training and use the system for applications
mentioned above. Exploring similar learning strategies for kernels other than that based on
the histogram intersection distance is also an interesting direction.
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