Metric Regression Forests for Human Pose Estimation
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Traditionally, human pose estimation algorithms could be classified into
generative [2] and discriminative [4] approaches. Generative approaches
model the likelihood of the observations given a pose estimate, however,
they are susceptible to local minima and thus require good initial pose
estimates. Discriminative approaches learn a direct mapping from image
features to pose space from training data, however, they struggle to gen-
eralize to unseen poses. Building on previous work [3], Taylor et al. [5]
bypass some of these limitations using a hybrid-approach that discrimi-
natively predicts, for each pixel in a depth image, a corresponding point
on the surface of a humanoid mesh model. This mesh model is then ro-
bustly fit to the resulting set of correspondences using local optimization.
Surprisingly though, these correspondences are actually inferred using a
random forest whose structure was trained using a classification objective
that arbitrarily equates target model points belonging to the same prede-
fined body part [3].

In this paper, we address Taylor et al.’s use of this proxy classification
objective by proposing Metric Space Information Gain (MSIG), a replace-
ment objective function for training a random forest to directly minimize
the uncertainty over the target model points, naturally encoding the cor-
relation between these points as a function of the geodesic distance. To
this end, we view the surface of the model U as a metric space (U,dy)
defined by the geodesic distance metric dy (see first panel of Figure 1).
The natural objective function to minimize the uncertainty in the resulting
true distributions that result from a split function s in such a space, is the
information gain I(s) [1]. This is generally approximated using an em-
pirical distribution Q = {u;} C U drawn from the true unsplit distribution
pU as
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where Qy, and Qg are the two resulting empirical distributions from ap-
plying s, and A (Q) is some approximation to the differential entropy
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of the distribution pyy on U from which Q arose. We provide this approx-
imation by first estimating the true continuous distribution py (u) using
Kernel Density Estimation (KDE). Let N = |Q| be the number of data-
points in the sample set. The approximated density fy(u) is then given
by
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where k(u;u;) is a kernel function centered at u;. Unfortunately, the
obvious way to estimate (2) using Monte Carlo is quadratic in N (see full
paper) and thus a key contribution of this work is to demonstrate how to
efficiently estimate it in linear time.

To this end, we discretize the space as U’ = (u],u}...,uj,) C U. The
main advantage is that the discrete metric simplifies to a matrix of dis-

tances Dy = (dU(u§7u;-)> that can be precomputed and cached before-

hand. Even better, the kernel functions can be cached for all pairs of

points (u},u’;) € U". For our experiments, we choose the kernel function
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on this space to be an exponential k(u;;u’;) = 7 exp (7 S | where

dy (uﬁ,u}) is the geodesic distance on the model and ¢ is the bandwidth
of the kernel.
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Figure 1: We propose a method to quickly estimate the continuous dis-
tributions on the manifold or more generally the metric space induced by
the surface model. This allows us to efficiently train a random forest to
predict image to model correspondences using a continuous entropy ob-
jective.

Using our discretization U’ we then smooth the empirical distribu-
tion provided by Q over this discretization using the pre-computed kernel
contributions as
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where the weights 7;(Q) are the number of data points in the set Q that
are mapped to the bin center u}. In other words, {ﬂj(Q)}}/:l are the
unnormalized histogram counts of the discretization given by U’. We can
use this to further approximate the continuous KDE entropy estimate of
the underlying density in Eq. 3 as

pu(w) = fy(u; Q) ~ gy (a(u); Q) 6)

where o/(u) maps u to a point in our discretization. Using this, we approx-
imate the differential entropy of py (u) using the discrete entropy of gy
defined on our discretization. Hence, our MSIG estimate of the entropy
on the metric space for an empirical sample Q is
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Only the calculation of the histogram counts scales with the number of
training examples and thus, the complexity of calculating (6) is linear.

We find that forests trained using our MSIG objective function can
provide substantially better correspondences in comparison to the forests
trained using the objective from [5]. These improved correspondences
translates into modest improvements in pose estimation that allows us to
achieve state of the art pose estimation results with orders of magnitude
less training data.
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