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Abstract

The tasks of stereo matching, segmentation, and human pose estimation have been
popular in computer vision in recent years, but attempts to combine the three tasks have
so far resulted in compromises: either using infra-red cameras, or a greatly simplified
body model. We propose a framework for estimating a detailed human skeleton in 3D
from a stereo pair of images. Within this framework, we define an energy function that in-
corporates the relationship between the segmentation results, the pose estimation results,
and the disparity space image. Specifically, we codify the assertions that foreground pix-
els should relate to some body part, should correspond to a continuous surface in the dis-
parity space image, and should be closer to the camera than the surrounding background
pixels. Our energy function is NP-hard, however we show how to efficiently optimize a
relaxation of it using dual decomposition. We show that applying this approach leads to
improved results in all three tasks, and also introduce an extensive and challenging new
dataset, which we use as a benchmark for evaluating 3D human pose estimation.

1 Introduction

Two tasks that have attracted a great deal of work from vision researchers over the years are
the estimation of human pose in images, and segmentation of humans from a scene. Despite
the large body of research focusing on 2D human pose estimation, relatively little work has
been done to estimate pose in 3D.

The main objective of human pose estimation is often formalized by defining a skeleton
model, which is to be fitted to the image. It is quite common to describe the human body as
an articulated object, i.e. one formed of a connected set of rigid parts. On the other hand,
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the goal of segmentation is simply to specify the set of pixels which contain the human.
Human pose estimation and segmentation have a wide variety of applications, including
video gaming [22], security [16], hazard detection in automobiles [8], and photo substitution
[21].

In order to be useful for such applications, the results are required to be very accurate.
However, various challenges arise, such as self-occlusion, where one body part obscures
another; and for pose estimation, inter-part similarity, where different parts are very similar
in appearance. This problem is chiefly noticeable when comparing opposite limbs.

Classical pose estimation algorithms run on a single RGB image. Several of these use
simple models formed of 6 parts (upper body) or 10 parts (full body) [3, 9, 10]. Kumar e? al.
[13] use message passing to learn the relationship between adjacent parts, while Andriluka
et al. [2] use a kinematic tree prior: part relations are specified by a directed acyclic graph,
and the optimal skeleton is found jointly. Yang and Ramanan extend this approach by in-
troducing a flexible mixture of parts model, allowing for greater intra-limb variation [25].
However, restricting oneself to a single RGB image means that the aforementioned issue of
self-occlusion is very difficult to deal with.

Recently, the development of accurate, high resolution depth cameras such as the Mi-
crosoft Kinect [1] has improved performance [22], but due to infra-red interference, the
Kinect fails in outdoor scenes. An alternative approach, which we follow in this work, is to
use a stereo pair of cameras to build the depth image.

Stereo correspondence algorithms typically denote one image as the reference image and
the other as the target image. A dense set of patches is extracted from the reference image,
and for each of these patches, the best match is found in the target image. These matches are
combined to form the disparity map. While there has been much research into the best way
to create this disparity map [7, 11, 15, 18, 19], we find that an approach based upon a simple
matching cost is sufficient to provide a reasonable disparity map.

The task of combining multiple vision algorithms to produce a rich understanding of
a scene is one that has been extensively covered in the vision literature [3, 6, 14, 17]. The
problem with putting the algorithms into a pipeline, where the result of one algorithm is used
to drive the other, is that it is often impossible to recover from errors made in the early stages
of the process. This problem can be ameliorated by joint inference, as proposed by Wang
and Koller [24]. By constructing a multi-level inference framework, they are able to use dual
decomposition [12] in order to simultaneously provide segmentation and pose estimation of
humans.

In this work, we extend the formulation of [24] to include stereo, so that we can pro-
vide segmentation and pose estimation in 3D, not just 2D. While existing stand-alone stereo
correspondence algorithms are not sufficiently accurate to compensate for the lack of an
infrared sensor, our multi-level inference framework aids us in segmenting objects despite
errors in the disparity map. The contributions of this paper can be summarized as follows:
we present a novel dual decomposition framework to combine stereo algorithms with pose
estimation and segmentation. Our system is fully automated, and is applicable to more gen-
eral tasks involving object segmentation, stereo and pose estimation. Drawing these together,
we demonstrate a proof of concept that the achievements of Kinect can be matched using a
stereo pair of images, instead of using infra-red depth data. We also provide an extensive
new dataset of humans in stereo, featuring nearly 9,000 annotated images.

The remainder of the paper is organized as follows: our formulations of the three opti-
mization problems are laid out in Section 2, while Section 3 explains how we unify the three
methods. Results follow in Section 4, and conclusions are given in Section 5.
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Figure 1: Several complete pose estimations are obtained from Yang and Ramanan’s algo-
rithm, which we split into ten body parts. We then select each part individually (one head,
one torso, efc.). In this example, the parts highlighted in white are selected, enabling us to
recover from errors such as the left forearm being misplaced in the first estimate.

1

2 Problem formulation

The energy function which we wish to optimize consists of three main parts: stereo, seg-
mentation, and human pose estimation. Each of these are represented by one term in the
energy function. We introduce two additional terms, hereafter referred to as joining terms,
which combine information from two of the parts, encouraging them to be consistent with
one another. Throughout this paper, we use the subscript m = (x,y) to refer to a pixel, i for a
part index, j for a proposal index, and k for a disparity value.

We take as input a stereo pair of images £ and R, and as a preprocessing step, we use the
algorithm of Yang and Ramanan [25] to obtain a number Ng of proposals for Np different
body parts. In this paper, we use Np = 10, with two parts for each of the four limbs, plus one
each for the head and torso. Each proposal j for each part i comes with a pair of endpoints
corresponding to a line segment in the image, representing the limb (or skull, or spine).

Our approach is formulated as a conditional random field (CRF) with two sets of random
variables: one set covering the image pixels Z = {Z;,Z,,...,Zy}, and one covering the body
parts B ={B,Bs,...,Bjo}. Any possible assignment of labels to the random variables will
be called a labelling and denoted by z. In a particular labelling z, each pixel variable Z,, takes
alabel z,, = [dy, 5], from the product space of disparity and segmentation labels D x S, and
each part B; takes a label b; € B={0,1,...,Ng — 1}, denoting which proposal for part i has
been selected. In general, the energy of z can be written as:

E(z) = fp(z) + fs(z) + fp(z) + frs(2) + fsp(z), (1)

N .
i Js gives the cost of

fp gives the cost of the part proposal selection
{b,-}évjl, and fps and fsp are the joining terms. Each term contains weights % € R, which
are learned by gradient ascent. In the following sections, we describe in turn each of the five
terms.

where fp gives the cost of the disparity label assignment {d,,}

the segmentation label assignment {sm}?': -

2.1 Segmentation term

In order to build unary potentials for the segmentation term, we create a foreground weight
map based on the pose detections obtained from Yang and Ramanan’s algorithm. For each
pixel m, each part proposal (i, j) contributes a weight wl’-']’-, where wg'J’» = 1 if m lies directly on
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the line segment representing the limb, and decreases exponentially as we move away from
it. We then have a foreground weight Wg =}, ; WZ? and a background weight ¥; ;(1— w;?]’) for
each pixel. These weights are then used to fit Gaussian Mixture Models for the foreground
and background regions, which together give us a posterior probability p,, of each pixel m
being foreground. From this, we obtain unary costs 6 = —log(p,,) and 6 = —log(1 — py,),
which store the costs of assigning each pixel m to foreground and background respectively.

We also have pairwise costs ¢s which store the cost of assigning adjacent pixels to dif-
ferent labels. Defining the set of neighboring pixels C, we follow equation (11) in Rother et
al. [20], and write the pairwise energy as in (4) below. The energy we have to minimize is
the following, with weighting terms y; and }»:

fs(z) =n-0s(z) + 12 ¥s(2), @)
where: O5(z) = Y. sm-Op(m)+ (1 —sp)- 6p(m); 3)
ZneZ
0s(2)= Y. Llsw, #my) exp(=B [ L(m) — L(mo)|*). Q)
(my,my)eC

2.2 Pose estimation term

Recall that Yang and Ramanan’s algorithm provides us with a discrete set of part proposals.
Each proposal j for each part i has a unary cost 0p(i, j) associated with it, whose value is
based on the weights w;; defined in the previous section. The cost is also weighted according
the estimate index j, since lower-ranked estimates are less likely to be correct.

A pairwise term ¢;, ;, is introduced to penalize the case where, for two parts that should
be connected (e.g. upper and lower left leg), two proposals are selected that are distant from
one another in image space. We define a tree-structured set of edges 7 over the set of parts,
where (i1,i2) € T if and only if parts i; and i, are connected. For each connected pair of
parts (i1,i») € T, we model the joint by a three dimensional Gaussian distribution over the
relative position and angle between the two parts, using the training set to compute the mean
and variance for each part and dimension. We minimize the following cost function:

10
fe(@) =Y 6p(i.bi)+ - Y, @i (biy,biy), ®)
i=1 (i1i2)€T
bi m
where: Op(i,b;) =exp <2> zze'zw(i’bi)(l — Pm)- (6)

2.3 Stereo term

A particular disparity label d corresponds to matching the pixel (x,y) in £ to the pixel (x —
d,y) in R. We define a cost volume 0p, which for each pixel m = (x,y), specifies the cost of
assigning a disparity label d,,. These costs incorporate the gradient in the x-direction (in AL
and AR), which means that we don’t need to adopt a pairwise cost. The following energy
function then needs to be minimized over labellings z:

fo(z) =7%-Y 6p(m,dy), @)
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where: Z Z (|£(x+ 8x,y+ 8y) = R(x+ 6x —du,y+8y)| (8)
Sx=—40y=—4

+|AL(x+ 8x,y+ 8y) —AR(x+ 6x —dp,y + 8y)|).

2.4 Jointly estimating pose and segmentation

Here, we encode the concept that foreground pixels should be explained by some body part;
conversely, each selected body part should explain some part of the foreground. We use the
same weights w;’j" as defined in Section 2.1, and calculate two terms: cost J; is added if the
part candidate (i, j) is selected and the pixel m is labelled as background; secondly, cost J»
is added if a pixel m is assigned to foreground, but not explained by any body part. We set
a threshold 7 = 0.1 (value determined empirically), and a cost is accrued for m when for all
parts (i, j), w:’} < 7. The overall cost fpg for a particular labelling z can be written as:

Ips(2) =Y Ji(z )+Y7~Jz( ) ©)

where: J; (2) ZZ (bi=J)-(1=sm)-wi})s (10)
i,j m

Zl maxw <7T)-s (11)

2.5 Jointly estimating segmentation and stereo

Here, we encode the idea that, assuming that the objects closest to the camera are body parts,
foreground pixels should have a higher disparity than background pixels. To do this, we use
the foreground weights Wy obtained in Section 2.1 to obtain an expected value Er for the
foreground disparity:

Zm Wi © dm
YW
Using a hinge loss with a non-negative slack variable & = 2 to allow small deviations to
occur, we then have the following cost measure to penalize pixels with high disparity being

assigned to the background:

fsp(z) =% Y (1= sp)-max(dy, — Ep — &,0). (13)

m

Ep = (12)

3 Dual decomposition

3.1 Binarizing variables

Many of the minimization problems defined in Section 2 are multiclass problems, and are
therefore NP-hard to solve in their current forms [5]. However, we can binarize the multiclass
label sets D and B. For pixels, we extend the labelling space so that each pixel takes a vector
of binary labels z,, = [d(,0),d(m,1)s** sd(mk—1)>5m]> With each d(,, 1) equal to 1 if and only
if disparity value k is selected for pixel m. For parts, we extend the labelling space so that
each part takes a vector of binary labels b; = [b<i’0),b(,»11>, e ’b(i~NE_1>]’ where each b; ;) is
equal to 1 if and only if the j** proposal for part i is selected.

A particular solution to this binary labelling problem is denoted by zZ. Only a subset of
the possible binary labellings will correspond directly to multiclass labellings z; these are
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those such that each pixel has exactly one disparity turned on, and each part has exactly one
proposal selected. The set of solutions for which all pixels satisfy this constraint is called the
feasible set F. We can write:

K—-1 Ng—1
F=S%:Y dpy=1YZn€Z; Y b;;=1YB,€B. (14)
k=0 j=0

J

We rewrite the cost functions from (5) and (7) as follows:

@) =1-Y bay 0. )+wm Y, Y buj) bl G (J1sJ2): (15)
(i,J) (i1,i2) €T J1:J2

k

m

The joining functions given in Sections 2.4 and 2.5 can be binarized in a similar fashion (the
details are omitted due to space constraints). The energy minimization problem in (1) can be
restated in terms of these binary functions, giving us:

E(2) = fp(Z) + fs(2) + fp(2) + fps(2) + fsp(2) a7
subject to: Z € F.

3.2 Optimization

Minimizing this energy function across all labellings Z simultaneously is NP-hard [5], so in
order to simplify the problem, we use dual decomposition. A brief explanation is given here;
the interested reader is directed to [4] for an excellent tutorial.

We introduce duplicate variables Z; and Z, and only enforce the feasibility constraints
on these duplicates. Our energy function thus becomes:

E(Z,71,%2) =fp(%1) + fs(Z) + fp(Z2) + fps(Z) + fsp(2) (18)
subjectto: Z;,Z, € F, 2| =Z, Zp =1Z.

We remove the equality constraints via adding Lagrangian multipliers, and decompose this
dual problem into three subproblems L1, L, and L3, as follows:

L(z721,2) = fp(Z1)+ fs(Z) + fp(Z2) + fps(Z) (19)
+ fip(Z) +Ap(Z—71) + Ap(Z— 2)
= L(Z1,Ap) + Lo(Z2,Ap) + L3(Z,Ap, Ap), (20)
where: Li(Z1,Ap) = f)(Z1) — ApZy; 1)
Ly (22, Ap) = fp(22) — Apia; (22)
L3(Z,Ap, Ap) = f5(Z) + fsp(Z) + fps(Z) + ApZ + ApZ. (23)

are the three slave problems, which can be optimized independently and efficiently, while
treating the dual variables Ap and Ap as constant. This process is shown graphically in
Figure 2. Intuitively, the role of the dual variables is to encourage the labellings Z, Z;, and Z,
to agree with each other.

Given the current values of Ap and Ap, we solve the slave problems L, L, and L3, de-
noting the solutions by L; (Ap), La(Ap) and L3(Ap, Ap) respectively. We concatenate L; (Ap)
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MASTER MASTER

SlaveL, | |Slavel, | | Slavel, | | Slavel, | | Slavre L, | | Slavel,

(a) (b)
Figure 2: Diagram showing the two-stage update process. (a): the slaves find labellings z,
1, 7y and pass them to the master; (b): the master updates the dual variables Ap and Ap and
passes them to the slaves.

and L(Ap) to form a vector of the same dimensionality as L3(Ap,Ap). The master then
calculates the subgradient of the relaxed dual function at (Ap, Ap), given by:

VL(Ap, Ap) = L3(Ap, Ap) — [Li (Ap), Lo (Ap)). (24)

The master problem can then update the dual variables using the subgradient method, similar
to that of [24], and then update the A by adding oy VL(Ap,Ap) to them, and then passing
the resulting A vectors back to the slaves. Here, ¢ is the step size indexed by iteration ¢,
which we adaptively set as detailed in [12]. The o; form a decreasing sequence, so we make
progressively finer refinements with each iteration. The costs of variables for which the slave
problems disagree are altered in order to encourage the solutions to match.

3.3 Solving sub-problem L;

Since problem L; contains terms that only depend on the disparity variables, we can relax
the feasibility constraint in (14) to only depend on these variables. The feasible set is the set
of Z such that for all pixels Z,, Zf;ol d(mxy = 1. We call this expanded feasible set Fp. Then,
we can write L; in terms of the binary function f, as in (25) below. Since fj, includes only
unary terms, this equation can be solved independently for each pixel.

Li(Z1,Ap) =fp(Z1) — ApZi (25)
subject to: Z; € Fp.

3.4 Solving sub-problem L,

L, contains functions that depend only on the pose variables b;;, so we can again relax the
feasibility constraint. This expanded feasible set is the set of Z such that for all parts B;,
ZZ}EO_ ! b(; ;) = 1. Denoting this set Fp, Ly can be written in terms of fp as follows:

La(Z2,2p) =fp(Z2) — ApZa (26)
subject to: Zp € Fp,

with f as in (15). Ordering the parts B; such that (i1,i2) € T only if ij < ip, we find the
optimal solution via a bottom-up process based on the Viterbi algorithm [23]. The score of
each leaf node is the following, calculated for each estimate j:

score; () = Op(i, j) — Ap(i, j)- (27)
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For a node i with children, we can compute the following:

score;(j) = Op(i,j) — Ap(i,j)+ Y, min(@y i(j1,J)+score; (ji)), (28)
(i10)eT

and the globally optimal solution is found by keeping track of the argmin indices, and then
selecting the root (torso) estimate with minimal score.

3.5 Solving sub-problem L3

Sub-problem L3 is significantly more complex, as it includes the joining terms fjg and f§;,.
Since we have rewritten L; and L, in terms of the binary variables Z; and Z, we need to do
the same to the joining terms. J; (z) penalized background pixels being assigned a body part,
while J,(z) penalized foreground pixels not being explained by any body part. Together,
these form fpg(z), as in (9). For parts i, estimates j, and pixels m, this becomes:

f1’>s(_) =%-Jl<i>+w Jz( ) (29)

where: 1(Z) ZZ( w:’;) (30)
j m

J;(z) 21 (r maxwjj >0) 31

Function fsp(Z), which penalizes background pixels with a higher disparity than the fore-
ground region, becomes the following for pixels m and disparities k:

fSD :}/8 ZZ l—Sm mk)'max(j_EF_57O)>' (32)

Since all the terms in the energy function L3 are submodular, the optimization problem
is convex, and can be efficiently minimized via graph cuts.

4 Results

Experimental Setup: For each experiment, the training set is used for two tasks: to train
the pose estimation algorithm we use to generate proposals, and to learn the weights 7; that
we attached to the energy terms. These weights are learned by coordinate ascent.

Datasets: While there are plenty of datasets in the vision community for evaluating pose
estimation and stereo algorithms, we are not currently aware of any datasets for evaluating
3D pose estimation algorithms that run on stereo images. Therefore, we present a new
dataset, which we call Humans in Two Views (H2view for short).

The dataset, which is publicly available!, consists of 8,741 images of humans standing,
walking, crouching or gesticulating in front of a stereo camera, divided up into 25 video
sequences, with eight subjects and three locations. The dataset is fully annotated, with left
and right RGB images available, plus ground-truth depth, segmentation and pose information
obtained via a Microsoft Kinect, and corrected manually. The training set contains 7,143 im-
ages, while the test set features 1,598 images, with a different location and different subjects
from the training set.

"http://cms.brookes.ac.uk/research/visiongroup/h2view/
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Method Torso | Head | Upper arm | Forearm | Upperleg | Lowerleg | Total
Ours 949 | 88.7 74.4 434 88.4 78.8 75.37
Yang[25] 72.0 | 873 61.5 36.6 88.5 83.0 69.85
Andriluka [2] 80.5 | 69.2 60.2 352 83.9 76.0 66.03

Table 1: Results (given in % PCP) on the H2view test sequence.

(a) Pose, segmentation and stereo (b) Error correction: the first estimate (first image) misclassifies

results together. the left leg (red), while the second estimate (second image) gets
it right; our segmentation (third image) and stereo (fourth image)
cues enable us to recover (fifth image).

Figure 3: Some sample results from our new dataset.

Performance: To evaluate pose estimation, we follow the standard criteria of probabil-
ity of correct pose (PCP) [10] to measure the percentage of correctly localized body parts.
Quantitative results are given in Table 1, while we include qualitative results in Figure 3.

Our model exhibits a significant performance increase for the upper body, where the seg-
mentation cues are the strongest. However, there is a slight reduction in performance for the
upper and lower legs. Our joint inference model improves on the performance of Yang and
Ramanan’s algorithm by 5.52%; an example where our formulation has corrected a mistake
is shown in Figure 3(b). Some qualitative stereo and segmentation results are given in Figure
4. Due to the difference between the fields of view of the stereo and Kinect cameras, ground
truth disparity values are only available for the foreground objects, some background ob-
jects, and surrounding floor space. Comparing our stereo results (Figure 4(b)) to the ground
truth disparity values for these objects (Figure 4(c)) shows a good correspondence between
the two. On the negative side, the segmentation frequently omits pixels from the legs (Figure
4(d)). This is perhaps because the foreground weights are weaker in that area, as all of the
top ten detections returned by Yang and Ramanan’s algorithm contribute to the foreground
weight map, and the accuracy of leg detections drops off sharply after the top detection.
Runtime: Our algorithm requires around 15 seconds per frame, using a single 2.67GHz
processor. This is similar to the observed runtime of Yang and Ramanan (about 10 seconds
per frame), which only solves pose estimation, and is much quicker than the implementation
provided in Andriluka et al. [2], which requires around 3 minutes per frame.

5 Conclusions

In this paper, we have described a novel formulation for solving the problems of human
segmentation, pose estimation and depth estimation, using a single energy function. The
algorithm we have presented is self-contained, and performs very well in the pose and depth
estimation tasks; however, there is considerable room for improvement in the segmentation
results. Additionally, we have introduced an extensive, fully annotated dataset for 3D human
pose estimation.
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XA
.

(a) (b) ©) (d) (e)

Figure 4: Sample stereo and segmentation results. (a): RGB image; (b): disparity map; (c):
ground truth depth; (d): segmentation result; (e): ground truth segmentation. The Kinect
depth data used to generate the ground truth depth in (c) is only available for some pixels,
due to the slightly different field of view of the camera.

The algorithm is modular in design, which means that it would be straightforward to
substitute alternative approaches for each slave problem; a thorough survey of the efficacy of
these combinations would be a promising direction for future research. There is also scope
for improvement in our runtime by sharing operations across CPU cores, for instance by
running the slave algorithms in parallel.
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